Revision 82 — 2013-05-31

Android Deployment Release Notes

Table of Contents

O VETVIEW ..ttt ettt et a bt et e e hb e e bt e s at e et e e e a bt e bt e sab e e bt e e st e e bt e sabeenbeeeabeenbeesateenbaeans 4
GEHING STATLEA. ...ttt ettt ettt et be et sb e e bt et e sbeete et e sbeebeeanes 5
PrOIEQUISTEES.tieeiiie ettt ettt ettt e et e et eeestaeeensbeeensseeensaeeessaeeanseeeanseesnseeennes 5
Configuring LAVECOAE.c.eeiiiiiiiiiiiieee ettt et st 5
Configuring an Android Standalone..............cceeeiieiiiiriiiiieiii et sveesaaesaneens 6
Configuring an emulated dEVICE.......cc.covuiiiiiiiiiiiiiricee ettt 7
Configuring @ 1€al AEVICE.......eeiuiieiieriieeieecie ettt ettt et e et e e st e e beestaeebeessbeesbeessseensaesaseesseensns 7
Testing an Android appliCAtION.ccuiiiiiiiiieiiee ettt st 8

A FITSE PTOJECL..eiitiiiieeieecie ettt ettt e s e et e st e esbeeesbeesbeeesseensaessseenseessseensaessseenseans 8
Configuring an Android APPlICAtION.coueviiiiiiiiiieieet et 10
Setting MaANITESt OPTIONS.viiiiiiieiiie ettt ettt e e et e e et e e s beeesabeeesnbeeeaseesnsseesnneeenns 10
Adding a laUNCRET 1COM......c..eiiiiiiiieiie ettt ettt ettt sae e et e saeeenbeeees 11
Adding a splash image (personal and educational)............ccceccveeeiieriieiienieeiieeie e 11
Adding a default launch image (trial).........coceeriiiiiiiiiii e 12
AddIng CUSLOM FONTS......cviiiiieiiiciieiee ettt et ebe et e e b e e teeesbeestaeesbeesaesnseenseennns 12
DeploymeEnt FEATUIES......c.eiiuiiiiiiiie ettt ettt ettt e et et e et esseeebeesteeeabeesnteenbeesneaens 14
Standalone DUIlAEr MESSAES........cccvieruiieiieiiieieeree ettt ettt et e eteesaeebeessaeesaessseesseessseenseas 14
General ENINe FEATUTES.cc.eviiiiiiiiiertceeteeet ettt sttt s 15
ENINEG VETSION.ceiiiiiiiiiieiiiie ettt ettt e e e e st e et eeettee e steeeseaeeansaeeansaeeanseeensseesnnseeensseenn 15
WHhat dOESN't WOTK.....coouiiiiiiii ettt sttt ettt e ettt e b e saaeeneeas 15
WHRAt OGS WOTK....cuiiiiieee ettt ettt et et s bt et st e bt et e eneenbeennesnnans 15
WiINdoOWIng and STACKS.c..eeiiriiiiiiiiieeieet ettt ettt st 16
System Dialogs — ansSwer and @SK............ccvieiieiieiiiieiieeie ettt es 16
NON-I1€ URL QCCESS. ... uvieutieiiiieiieeie ettt ettt ettt e et e st e et esateeabe e s et e enbeesneeenseas 16
EXERINALS. ...ttt ettt h ettt b et e a e bt et a ettt nee e e 18
Android Specific Engine FEAtUres..........cccoiiviiiiiiiiiiiiiicicniceeeetee ettt 19
LIIMIEATIONIS ..ttt ettt e b e et e bt e st e bt s bt e bt e e st e e b e e sa e e bt e eab e e bt e nateas 19
IMUIE-EOUCR EVENLS. ..ottt ettt ettt e ettt e st e e bt e sabeebeesnaeesea e 19
IMIOUSE VOIS ...ttt ettt ettt ettt et e sa e et e bt e e st e s be e s at e e bt e eabeesbeesabe e bt e eateeseenanean 19
IMIOTION ©VEIES. ...utieitteitieeiie et te ettt et e st e et e sttt et e e ettt e bt e seeeeateesaeeenbeassteeabeesaeeenseassbeenseesnteenseasnsennseans 20
Hardware DULON SUPPOTIL........ccouiiiiieiieiiieieeeie ettt ettt ere e e s aeebeessaeesaeesseesseessseensaesssaens 20
SYSEEM ALEIT SUPPOTL....cueeiiiiiiiieiiietteteet ettt ettt et ettt et be et st sbe e bt et esaeenees 20
VIDTALION SUPPOTL....eetiiieiieitieeieeriie et ette ettt esteesteesteeetbeeseessseesseessseesseessseesseessseasseessseenseenssessseenses 20

A CCRIETOMELET SUPPOTTL.....eieieietieriieetie ettt et ettt et et e et esiteeabeesteeeateesseeenbeeseeeabeenseeenseeseesnseenseennne 20
Location tracking (GPS).....cccuiiiiiiiieieee ettt e et eesteeenseeseeeasaesea e 21
DEterMIniNg SUPPOTL.....ccuieieiieiieriieeiteeeite et e site et e stte e bt e stteebeesateebeesseeeseesnseenseesnseenseesnseanseans 21
Activating and deactivating traCKinNg...........cccevvvieruieriieiiienieeieesie et see et e sereebeeseeeseeseneenseas 21
Detection 10Cation ChanGES..........cc.eeiiiiiiiiiiieie ettt ettt ettt e s e ebee e ens 21
QUETYING the LIOCAION.eiiiiiieiiiiecie ettt e et e s ee e s e e e b e e eaeeesnneeens 22
Heading tracking (digital COMPASS)......ccuieiuiiriiiiieiiieiie ettt ettt ens 22
DEtermMINING SUPPOTL.....eeeiiiieiiieeiieeitee et e ettt e eieeesteeesateeesateeessaeeasaeessaeesnseeeassaeenssesensseesnsees 22
Activating and deactivating traCKing...........ccceeiieiuieiiiiiiieiie et 22
Detection heading Chan@es..........c.cociiiiieiieiiieiecie ettt e seaeereesaseesseenenas 23

Revision 82 — 2013-05-31

QUErying the heading.........cooiiiiiiiieiie ettt st et ebee e ens 23
SENSOT tTACKIIIE. ... vteeviieeiieeeiieeetee et ee et ee et e e e et e e st e e s steeessteeessbeeessaeesssaeeensseessseeensseesnsseesnssens 23
SeNSOT AVATLADIIILY ... eiiiiiiiieiie ettt ettt ettt eaneas 23
Start traCKING SEINSOT....cuiiiiitiieeiie ettt etee st e et ee e aeeetaeeesaeeesneesssaeessseeessseeenssenenns 24
SEOP rACKING SEINSOT.....cutieiiieiiieiie ettt ettt ettt e et e et e et e st e e beesateenbeesabeenseesssesnseesnseenseennns 24
SENSOT UPAALE TNESSAZES. .. eeeuvvreeerieriieeeiieeeieeesiteeestreesteeesaeeessaeeessseeassseesssseesssseessssesssseeesssees 24
Getting @ SENSOT TEAAINGecvieiiiieiieeiie ettt ettt ettt et e st e et esteebeesabeeseeenbeebeesnseenseesnseens 25
Photo album and camera SUPPOTTL..........eeecuiieeiiieeeiieeeiieecieeerte e et e eeeeeeteeeeaaeesseeesaseeennseeenneeennns 25
Taking or ChOOSING PROLOS.iiiiiiiiiiieeiiee et ettt s ee 25
Saving photos to the USers albUm.............cocciiiiiiiiiiiiicie e e e 26
KeYDOArd TNPUL.......eiiiieiie ettt ettt et e st e e bt e sateenbeesneeenseeens 26
Configuring KEYDOArd tYPC.......veieviiiiiieiiie et e e e e e e s rae e s e e enseeennns 26
ACtiVation NOTHICALIONSc..eiiiiiiiiiieitteier ettt sttt ettt nbe s 27
Orientation NANAIING.........coocuiiiiiieiie e e e et e et e e e taeeesaeeesaeesnseeennseees 27
AULO-TOTATION SUPPOTT..cntieiiieniieeiteetieeteeteesteettesteeteesteeseessteenseessseenseessseenseesssesnseenseesnseanseas 27
QUETYING OTTCNEALION.vveeiiiieeeiiieeeieeeeteeeetteeestteeesteeeeeaeeseeeessseeeassaeessseeessseeesssessnsseesssseesssseenns 27
Controlling AULO-TOLALION.eeiuiieiieriie ettt ettt ettt ettt e et e sabeebeesebe e seessbeenbeessseenseens 28
Orientation changed NOtIICAtION.c..iieiiiieiiiecieece e e e 28
Device SPeCifiC OTTENTATIONSccuiiriiieiieiie ettt et ste ettt et e et e st e ebeeseaeebeesabeenseesnseenseas 28
ResoIUtion handling.........ccc.eeeiiiiiiie ettt e e st e e st e e snaeeessbaeenaeeenes 29
TeXt MESSAZING SUPPOTL....eeeueieririetieeiteerieesteenteeateenteesnseeteessseesseessseeseessseesseesssesseessseesseessessseenns 30
EMail COMPOSITION. ...ccutiiiiiiieiiie et cie ettt et e e st e e stteeetaeestaeeseaeesnsaeessseeessseeesseeenssaennns 30
BaSIC SUPPOIL...ciiiiiieeiitetie ettt ettt et et e et et e et e e s aeeesbeessaeenseesateenbeesnneenseennnaens 30
AQVANCEA SUPPOTL....eeiiiieiiieeiie ettt ettt e et e e steeesateeessaeeesaeessaeesnsaeesssaeensseeensseeensees 31
File and folder handling.............cooiiiiiiiiiii ettt st s 32
Basic sound playback SUPPOTL........cccviieiuiieiiiieeeie ettt ettt e stee e seree e be e e eeaeeeeaeeenneeas 33
Multi-channel SOUNA SUPPOTL......cc.eeiiiiiiiiiiieiieeie ettt ettt ettt e seteeseessaeenseenes 33
Playing SOUNAS.eiiiiiieiiie ettt e e et e e et e e e s sbeeessbeeessaeessbeeenseeennneesnseeennnes 33
CRhaNnE] PrOPETTIES. ... viitieeiiieiie ettt ettt ettt e et e st e e bt e s st e sateesateenseessbesnseenseeenseennes 34
Managing CRANNEIS.cccuiiiiiiiiiie et e e e e e e sbee e ssaeeesnseeenseeennes 35
Video Playback SUPPOTTL.......cccuiiriiiiiiiiie ettt ettt ettt e st e e beesabeeseesnseenseas 35
URL JaUNCHING SUPPOTL...ccetiiiiiieeeiieeeiee ettt esiteesteeesteeetveeetaeesseeessseeessseeessseeessseeenssessnsseesnsseenns 36
FONE QUETYING SUPPOTT...utiieiiieiieeiieeiie ettt et e sttt e st e et e st e ebeesateesbeessaeenseessseenseessseeseesnseenseennns 36
Hardware and system Version qUETY SUPPOTT........eeerreeerureerieeerieeerreeesereeessreeessseessseeesssseessseeensnes 36
Idle Timer CONTIGUIALION.iitiiiiiieiieeie ettt ettt ettt et ettt e st e st e e e enbeebeeenbeeseesnseenneans 37
Locale and system 1anguage qUETY SUPPOTL.......cccvieriieeriiieeiieeerieeeieeeeeeeesreeesneeessreeesseessseeesnnns 37
Querying camera CAPADIIITIES.eevuieiiieiieeie ettt ettt et eeas 37
Clearing pending INTETACTIONS.eeeriieeiieeesteeeiieeeiteeeseeeetaeesseeesaeeessreeessseeessseessseeesseesseeesnnes 38
Status bar cONfigUIration SUPPOTL.......c..eeruieriiiiiieeiieiie ettt ettt et e et e e sbeesseeebeessaeeseenseaens 38
CONEACE ALCCESS -enteeiteentieiiie et ee ettt e et e bt ettt e b e sab e e bt e eae e e bt e e st e enbeesbeeaabeesabeenbeeasbeaabeesabeenbeesnteenneas 38
UT Contact ACCESS FEATUIEScc.veiruiiiiiiiiiiiieiceeee ettt 38
Creating @ COMLACE.......uiiiiieeeiieeeieeeeteeestteeesee e et e eeteeesbeeessseeessseessseessseeeasseeessseeensseesssseenns 39
PicKiNg @ CONLACE.......eiitieiiieiieiie ettt ettt ettt et e et e et e st e e seeeabeesseeenseeneeas 39
SHOWING @ CONTACT ..e.vveeeiiieeeiieeeiee ettt et e et e e et e e sbe e e s beeessbeeessbeeensseeenseeensseesnsneas 39
UPAAting @ CONTACTvieniiieiieiieeiieeiie ettt ettt et et e e bt esiteesteesaaeeseesnbeesseesseeeseesnseenseennns 39
Syntax Contact ACCESS FEATUIESccoviuiiiiiiiiieiciiiee ettt e e e e e aaee e e 39
CoNtaCt ATTAY STIUCKUTE. ..ceeuviiiiiieiiiee ettt et ettt e et e et eeeibeeebteesabeeesabeeesabeesnaseesseeesnnee 39
AdddING @ CONLACE......ccuiiiiiiiieciieecee ettt ettt e et e et e e sbe e e e beeessbeeessbee e sseesnsseeesseeenseeas 41
FINAING @ CONTACTviiniiieiiieiie ettt ettt ettt e et e et e et e eabe e bt e snseenneesnseas 42

Revision 82 — 2013-05-31

RemMOVING @ CONLACE.........iiitiiiiieiie ettt ettt e ettt e e te et eesbeesseesnteeseeeane 42
Getting Contact DAtacc.eeeeiiiiiiiiiecieeee et e e e e e enreas 42
DeVICe INTOIMATION. ... eeutiriiiiiiieeiieete ettt sttt ettt st sae et e e b eaee 42
L0Cal NOIFICALIONS. ..ottt ettt et et e bt e et enbeeeaeean 43
PUSH NOtHICALIONS. ...ttt ettt sttt et 44
Custom URL SCHEMIES.c...eeiiiiiiiiiiieiee ettt sttt e e saneas 45
TN APD AQVEITISING. ...eeneiieiiieiie ettt ettt et et e et e st e st e esteeesbeesseeeaseesaeeenseenseesaseenseeans 46
RegiStering YOUT APD K@Y . .uuiiiiieiiieeieeee ettt e tre e st e st e e s b e e e e ennaeeen 46
Creating & Managing AdS........c.eoouieiiiiiiieiieie ettt ettt te sttt e st e beesseeebeesnaeens 46

LA (ST T TSP PRP 47

IN APD PUICRASING. ...ttt ettt e st e et e s abeeseessneensees 48
N2 8172) G PSR RUR 48
Commands & FUNCLIONS........couiiuiiiiiiiiiiieeiteeee ettt 48

A (ST e T PP SPRRUPPPPP 50

BUSY INAICALOTtieiieeiieiie et ettt et et e et e et e sabeessbeenbeessaesnseeeseeenseenseesnseas 51
Modal PiCk-WheEel SUPPOTL........ceoiuiiiiiiiieiiieeiie ettt et et e et e e s ereesteeessaeeessaeeesseeenneennns 51
MEdia PICKET SUPPOTL....ceiiiiieiiieiieete ettt ettt ettt e bt e st e et e s aeeenbeessseenseesneeenseeens 52
D 1T 0 (0] (S g U) 1) F SRS 52
INALIVE CONTIOIS. ...ttt ettt sttt et bt e bt et s e e bt eatesbtesbeeanesanens 52
AL COMIIOIS ...ttt ettt e bt e et e bt e et e e bt e sabe e seesaneens 53
PLOPEITIES. ..ttt ettt et e et e et e et e eabeesseeenbeenaeeenbeesneeenseenneeenne 53
BIOWSET CONTIOL......iiiiiiiiiie ettt ettt ettt s 53
PLOPEITIES. ..ottt ettt et e bt e st e st e e bbeeabeesseeenbeesaeeenbeenneeenseenneeenne 53
AALCHIOMIS. .ttt ettt et e e h e et e s h bt bt e bt e e b e e h b e e bt e bt e e bt e bt e e abe e bt e eabeeneas 54
IMLESSAEES. ..o euteeeuiieeeitee ettt e ettt ettt e ettt e st e e s et e e s ab e e e et e e ettt e ettt e e ateeebteeeabt e e e bt e e e abeeenabeeeeaneens 54
SCTOILET CONTIOL.....iiiiieiie ettt ettt et e bt e et e e 54
PrOPEITIES. ..ttt ettt ettt et e et e et eeabeesseeenb e e st e enbeenneeenseenneeenne 55

A (S e T PSP SPRRURPPPP 55
PIAYET CONIIOL..... ettt ettt ettt st et e e abe e st e st e esaeeenseessaesnsaensneans 56

S (0] 015 4 TS PR RSRRRTS 56
AALCHIOMIS ..ttt et st b et e h e bt et e a e bttt eh e bt et eat e bt et e at e b enees 56

A (S e TP SPRRURPPPP 56
INPUE COMETOL.....eieiiieiiiee ettt ettt e et e et eebe e seesnbeesseeenseeseas 56

S (0] 015 4 TS PR RSRRRTS 57
IMLESSAEES. ... eeeuteeeuitee et ee ettt e ettt ettt e ettt e st e e s it e et e e e et e e e et e e e bt e e eat e e s bt e e e bt e e eabt e e e abeeenabeeeeaneeas 59
Multi-1line INPUL CONIOL......oiiiiiiiiie et e e e et e e e e e e ensaeeeanes 59
NOtEWOTTRY CRANEZES.eeiieiiieiieiie ettt ettt ettt e et e st e e teesabeebeeesbeenseesnseenseesssesnseens 59
OpenGL CompoSitor (5.0.1-AP-1)..ueiiiiiieiie et e s e seaeeen 59
Contact access UPAates (0.0-AP=3)....eeerieriieiieieeiiee ettt ettt e eneeas 59
Change Logs and HISTOTY......cccuuiiiiiiiiiiie ettt et e et e st e e e aae e s aeeessaeeesnseeesssaeesnseeennseeas 60
ENngine Change HiIStOTYccuiiiiiiiiiie ettt ettt ettt e st e s e et e eneeenaeeenne 60
Deployment Change HiStOTY.......cccuiiiiiiieiiiieiiee ettt ere e etee et e e sae e e b e s saveeenaeeennseeen 64
Document Change HiStOTY........ccoiiiiiiiiiieiieiie ettt ettt sttt ee et e e b e e saeesnbeenenas 67

Revision 82 — 2013-05-31

Overview

LiveCode now incorporates facilities for deploying to Android. These facilities include the ability to
build Android applications that run in the Android emulator as well as on Android devices.

In addition to supporting much of the desktop engine's features, the Android engine hooks into
many Android-specific features. Please see the Android Specific Features section for more details.

For information on what parts of the Desktop feature set are currently implemented when deploying
to Android, please see the What Works section.

Note: If you have not purchased the Android deployment pack, you can still try out Android
deployment features, but any built apps will have a forced banner for 5 seconds on startup, and will
quit after one minute.

Important: The LiveCode Android engine supports Android devices running version 2.2 and higher
only.

Revision 82 — 2013-05-31

Getting Started

Before you can use the Android plugin, you need to ensure you have set up your system
appropriately.

This section contains all the salient details you need to setup your system, but there are step-by-step
lessons taking you through this in more detail for each platform here:

http://www.runrev.com/links/setup-android-mac
http://www.runrev.com/links/setup-android-windows
http://www.runrev.com/links/setup-android- (Under development)

Prerequisites
If you are intending to use the Android deployment pack on Windows, you will need:
* Windows XP/Vista or Windows 7
* LiveCode 4.5.3 or later
* The Java SDK: http://www.oracle.com/technetwork/java/javase/downloads/index.html
* The Android SDK: http://developer.android.com/sdk/index.html
If you are intending to use the Android deployment pack on Mac, you will need:
¢ Mac OS 10.5.x or later
* LiveCode 4.5.3 or later
* The Android SDK: http://developer.android.com/sdk/index.html
If you are intending to use the Android deployment pack on Linux, you will need:
* LiveCode 5.5.2 or later

* The Java SDK: http://www.oracle.com/technetwork/java/javase/downloads/index.html
* The Android SDK: http://developer.android.com/sdk/index.html

After you have installed the pre-requisites make sure you run the Android SDK Manager and have
installed the 'SDK Platform Android 2.2, API 8, revision 2' package.

Configuring LiveCode

After you have set up your system with the Java Development Kit and Android Development Kit, it
is necessary to inform LiveCode where to find them.

To configure the paths to your installed SDKs, use the Android section of the Mobile Support pane
in Preferences.

http://www.runrev.com/links/setup-android-mac
http://developer.android.com/sdk/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://developer.android.com/sdk/index.html
http://developer.android.com/sdk/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.runrev.com/links/setup-android-
http://www.runrev.com/links/setup-android-windows

®

Preferences

o General

o Files & Memory
© Appearance

© Object Sizes

© Script Editor

© Documentation
o Property Profiles
o Application Browser
2 RevOnline

© Mobile Support
o Compatibility

i0S SDKs

In order to deploy ta I0S, LiveCode needs to know the location of
your 05 development SDKs.

Location of develaper raot for i0S 3.2 and above

B
[-]

Location of developer root for i0S 3.1.3:

Available simulators: (none)

Android SDK

In order to deploy to Android, LiveCode needs ta know the
location of your Android development SDK.

Location of Android development SDK root

B

JDK Path;

Reset All Preferences to Defaults

Revision 82 — 2013-05-31

Use this pane to choose the correct SDK paths by clicking the '..." button after the Android
development SDK location field.

After doing so, the JDK path should be automatically located. If a path fails to appear for the JDK it
means you have not correctly installed or configured your JDK.

If you are developing on Linux you may have to manually set the path of the JDK.

Configuring an Android standalone

To configure a stack for Android, you use the new Android deployment pane in the Standalone
Application Settings dialog, available from the File menu.

Standalone Application Settings for AndroidTest - Android

800
B =
@
General Stacks

B

Copy Files Mac

2 H © B B ™

windows Linux Web 05 Android

Bug Reports

Label
Identifier
Version Name
lcon

Splash

Signing
Key

Externals

Status Bar

Build for: E Android

Basic Application Settings

Requirements and Restrictions

AndroidTest

comyourcompany.yourapp

1.0.0 Version Code

[Sign for development only

] revzZip [rewxmL
] mysaL

User Interface Options

Initial Orientation | Portrait

(@) Visible () Hidden

Required
Camera O
: Camera Autofocus O
- Camera Flash O
— Front Camera O
O Accelerometer O
Telephony O
}3i Telephony CDMA O
Telephony GSM O
Fake Touch O
1 sqLite Touchscreen O
- Multitouch O
Multitouch Distinct O
Multitouch Jazzhand O
Application Permissions
,.,g.‘i [Write External Storage
E Internet
g Camera

Minimum Android Version 2.2 - Froyo }-'E‘a

c
n
o

COOOOOOOO0OOCO

e
T
[

(clolololololololololololOR

This pane allows you to set the Android-specific options for your application. You can also add files
you wish to be included in the bundle using the Copy Files pane, and set the name of your
application on the General pane.

To make a stack build for Android, simply check the Build for Android button and configure any

options that you wish.

Revision 82 — 2013-05-31

Note: Making a stack build for Android disables building for any other non-mobile platforms,
however this is only true of the standalone's mainstack. If you wish to share code and resources
among platforms, simply factor your application into multiple stacks, using a different mainstack
for mobile and desktop targets.

Note: The Inclusions, Copy Referenced Files, Bug Reports and Stacks features are not available
when building for Android. If you wish to include multiple stackfiles in your application, use the
Copy Files feature instead.

Configuring an emulated device

In order to run an Android project, you need either an emulated device running, or a real device
configured for debugging connected.

Creating an emulated device is easily done using the Android SDK Manager that you will have
previously installed:

* Make sure the SDK Manager is running.

* Choose 'Virtual Devices' from the left-hand list

* Click 'New..."

* Choose a name for your device

» Set the Target to at least Android 2.2 — API Level 8
* Fillin an SD Card size.

» Enable the Snapshot option (this isn't essentially but significantly speeds up subsequent
launches of the emulator!)

* Then click Create AVD

After you have performed these steps, your newly created device should appear in the list of
existing Virtual Devices, from which you can click Start... to launch it.

Any running Virtual Devices will appear in the Android Plugin's device list (assuming you have
correctly configured the SDK root).

Configuring a real device

Instead of using the emulator, you can also launch LiveCode Android projects on real Android
devices after they have been appropriately configured for debugging.

If you are running on Windows then before you can connect to a real device, you need to ensure the
appropriate device driver is installed on your development machine. For details of how to do this
see here:

http://developer.android.com/sdk/win-usb.html

If you are running on Mac, there is no need to install any drivers as it 'just works'.

Once you have any necessary drivers installed, you must then put your device into debugging mode.
To do this, go to the home screen, press MENU, select Applications > Development and enable
USB debugging.

Finally, simply connect your device via USB to your machine and it should (after a few moments)
be available in the Android Plugin's device list (assuming you have correctly configured the SDK

http://developer.android.com/sdk/win-usb.html

Revision 82 — 2013-05-31

root).

Testing an Android application

Once you have your stack configured for Android, you can test it on either a real Android device or
in the Android emulator by using the 7est button on the menubar:

Window Help
. i

rs User Samples Tutorials Resources Dictionary Test

This button will be enabled for any stack that has been configured for Android deployment, and
clicking it will launch the stack on the currently chosen 7Test Target, terminating any running app
with the same id as necessary.

You can access the Test action from the Development menu. Additionally, this is where you can
configure which target Android device to use:

View Window Help

l Rev Online A 1

lles Tutorials Resources Dictionz

Tl

Object Library
Image Library
Plugins >

Android emulator-5554
Android HT9CZP807553

~ Test Target

+ Script Debug Mode
Clear All Breakpoints
Message Watcher

Suppress Errors
Suppress Messages

Suspend Development Tools

Here you can choose which Android device to use for Android testing. Any setting you choose here
will take effect the next time you use the 7est button or menu-item.

Note: If the Test button or menu-item remains disabled, even if you have configured a stack for
Android deployment, it probably means you haven't configured your SDKs correctly. In this case,
check the appropriate settings on the Mobile Support pane of Preferences.

A First Project

Once you have installed an Android SDK and configured LiveCode for it, it is easy to run a simple
project:

1. Create a new main stack via File > New Mainstack.

2. Rename your new main stack to Hello World

3. Drag and drop a button onto the new main stack, and call it Click Me
4. Edit the Click Me button script and enter the following:

on mouseUp
answer "Hello World!" with "ok"
end mouseUp

7.
8.

Revision 82 — 2013-05-31

Save the Hello World stack.

Bring up the Standalone Application Settings dialog from the File menu, switch to the
Android pane and make sure 'Build for Android' is checked.

Make sure your test stack is active and then click 7est on the menubar.

Click the Click Me button in the simulator to see your script in action!

You can try the stack out in different versions of the simulator, simply by selecting the version you
want from the Development menu.

Configuring an Android Application

Setting manifest options

Revision 82 — 2013-05-31

All Android applications have a manifest that is built into the package which controls many aspects
of the applications requirements and functionality. To set the manifest up, you simply use the
options presented in the Standalone Builder's Android pane, these will be used to construct a

suitable manifest automatically:

fe 00

®H» B = e & H 6 B

Web i0s

General Stacks Copy Files Mac Windows

u'ﬁb bhr s

Android Bug Reports

Build for: E Android

Basic Application Settings

Requirements and Restrictions

Label l myApp| G]

Identifier | COmM.yourcompany.yourapp @

Version Name Version Code
con | ®ol(-]

Splash |

Camera

Camera Autofocus
Camera Flash
Front Camera
Accelerometer
Telephony

Minimum Android Version [

2.2 - Froyo (14):]

Required

(=
w
m
o

@43
Gl
© ¢
App Billing Key | @

Externals [_| revZip [] revxmL (] sQLite

[mysaL @

User Interface Options

Signing l Sign with my key Telephony CDMA
Telephony GSM
Fake Touch
Touchscreen
Multitouch
Multitouch Distinct
Multitouch Jazzhand

Key|

Install Location l Internal Storage Only

0000000000000
0,0/000/0000.0000

Application Permissions (1

©

[] Write External Storage
] Internet

] Camera

[In-App Billing

[_] Fine Location

Initial Orientation l Portrait
[_| Coarse Location

Status Bar () Visible () Hidden @

Here the numbered items are as follows:
1. The string to display as the label of the application on the Launcher screen.

2. The unique identifier to use for the application, using the standard reverse domain name
convention.

A human readable version string for the application.

4. An integer indicating the version of the application — this is used by the OS to compare
versions of packages as opposed to the human readable string.

5. The PNG image file to use as the icon on the Launcher.

6. The image file to use in the personal and educational splash screens (this is not used when
building with a commercial license).

7. Whether APKs are to be signed with the development key, a custom key or no key (this is
only used when using 'Save as Standalone application').

10

Revision 82 — 2013-05-31
8. The key-store file to use to sign the application when “Sign with my key” is selected at step
7 (this is only used when using 'Save as Standalone application').

9. The preference for application storage on the device — This can be internal storage only
(device memory), allow external storage (user can select to install to device memory or SD
card), prefer external storage (install to SD card)

10. The Android Marketplace billing key used by the In-App purchasing mechanism. If
specified, verification of purchase is automatic. Verification will have to be done manually
in script if left blank.

11. The extensions to include in the application.
1. Choose 'revZip' if you are using any of the revZip commands and functions.
ii. Choose revXML' if you are using any of the revXML commands and functions.
1ii. Choose 'SQLite' if you are using revDB along with the dbSQLite database driver.
iv. Choose 'MySQL' if you are using revDB along with the dbMySQLdatabase driver.
12. The initial orientation to start the application up in.
13. The initial visibility of the status bar.
14. The minimum Android version required by the application.

15. The features that should be added to the manifest. A required feature will only be visible to
users who have devices that support the feature. A used feature will indicate to the user that
this application uses the feature. A used feature will still be visible to devices which do not
support the feature.

16. The permissions to be added to the manifest.

1. Write external storage is required if your app will read or write files on external storage
(e.g. an SD card)

ii. Internet is required if your app is accessing the internet.
iii. Camera is required if your app is using any camera features.
iv. In-App Billing is required if you wish to use In-App purchasing

v. Fine Location is required if you wish to use GPS to triangulate device location (requires
course location)

vi. Coarse location is required if you wish to use mobile networks to triangulate device
location

Adding a launcher icon
All applications currently installed on an Android device are displayed on the launch screen.

To customize the icon used for your application, you should provide an icon image (in PNG format)
of size 72x72 and reference it using the appropriate option in the Android standalone settings pane.

Adding a splash image (personal and educational)

If you are using a personal or educational license, then you are restricted in what can be displayed

11

Revision 82 — 2013-05-31

as the launch image. In this case you should provide a (square) PNG image that will be placed
inside a LiveCode branded banner (see below).

We recommend providing an image of 600x600 for the splash — this will give good results when
resampled at the various resolutions and sizes required by the different Android devices.

Note: With these license types, the generated launch image will remain on screen for 5 seconds
before being dismissed.

LIVE'CODe LIVE'CODR

Created with the LiveCade Personal License.

Not for commercial distribution.

Created with the LiveCade Educational License.

Not for commercial distribution.

Adding a default launch image (trial)

If you are evaluating the Android deployment feature using a trial license, then you cannot
configure a splash or launch image. Instead, all such applications will be built with the following
launch image:

This application was
constructed with a trial
version of LiveCode from
RunRev.

It will run for one minute
and then exit.

LIVE/CoDR

Created with the LiveCode Trial License.
Not for commercial distribution.

This image will remain on screen for 5 seconds before the application launches, and the
application will quit after one minute.

Adding custom fonts

In LiveCode 5.5 the ability was introduced to allow applications to bundle custom fonts which then
become available to the app (and only that app) while it is running.

To take advantage of this feature, all you need to do is reference the files of any fonts you wish to
include in the Copy Files pane. These files can either be a direct file reference, or contained in one

12

Revision 82 — 2013-05-31
of the folder references. The Standalone Builder will treat any files that end with the extension #f or
ttc as font files to use in this way.

Any fonts included in this way will appear in the fontNames and can be used in the same way as
any other font on the system.

Important: Make sure you have an appropriate license for the fonts you choose to bundle with your
app like you would any other media such as sounds, images and videos.

13

Revision 82 — 2013-05-31

Deployment Features

Standalone builder messages

When building a mobile application for either a device (through Save as standalone) or for
simulation (by clicking Simulate), messages are sent to the application's main-stack to notify it
before building starts, and after build has finished.

Before the application is built the following (optional) message is sent:
savingMobileStandalone targetType, appBundle

Where targetType is either "android release" or "android test", depending on the type of build; and
appBundle is the path of the application bundle being built.

After the application is built (but before being launched in the simulator), the following (optional)
message is sent:

mobileStandaloneSaved targetType, appBundle

Where the parameters are the same as before except if the build failed, in which case appBundle
will be empty.

Note that if you make changes to the stack in savingMobileStandalone that you want to appear in
the built application, you must save the stack before returning from the handler. The mobile
standalone builder uses the stackfile as it is on disk after return from the message to build the app.

14

Revision 82 — 2013-05-31

General Engine Features

Engine version

The Android engine version is in step with desktop engine version and build number. A substantial
subset of the the desktop feature set is available, together with a library of mobile specific
functionality.

What doesn’t work

The following features have no effect:

clipboard related syntax and functionality (planned for a future release)
printing syntax and functionality (planned for a future release)

setting the mouseLoc (no support on mobile devices)

socket syntax and functionality (planned for a future release)

dbPostgreSQL, dbODBC and custom externals (planned for a future release)
print to pdf (planned for a future release)

industrial strength encryption and public key cryptography (planned for a future release)
dbMysql SSL support (planned for a future release)

paint tools (planned for a future release)

videoclips/player functionality (planned for a future release)

revBrowser (use native browser control instead)

revFont (use 'custom font inclusion' mechanism instead)

drag-drop related syntax and functionality (no support on mobile devices)
backdrop related syntax and functionality (no support on mobile devices)
cursor related syntax and functionality (no support on mobile devices)
revSpeak (no support on mobile devices)

full screen snapshot commands (planned for a future release)

What does work

The following things do work as expected:

rendering of controls with non-system themes (default is Motif theme)
date and time handling
gradients, graphic effects and blending

any non-platform, non-system dependent syntax (maths functions, string processing
functions, behaviors etc.)

object snapshot commands

15

Revision 82 — 2013-05-31

* revZip, revXML, dbSqlite and dbMysql

Windowing and Stacks

The Android engine uses a very simple model for window management: only one stack can be
displayed at a time.

The stack that is displayed is the most recent one that has been targeted with the go command.

The currently active stack will be the target for all mouse and keyboard input, as well as be in
receipt of a resizeStack message should the orientation or layout of the screen change.

The modal command can also still be used, and will cause the calling handler to block until the
modal'ed stack is closed as with the normal engine. Note, however, that performing a further go
stack from a modal'ed stack will cause the new stack to layer above the modal stack — this will

likely cause many headaches, so it is probably best to avoid this case!

At this time menus and other related popups will not work correctly, as these are implemented in the
engine (essentially) as a specialized form of go stack they will cause the current stack to be overlaid
completely, with various undesirable side-effects.

Note: The 'go in window' form of the 'go stack' command will not work correctly in the Android
engine and must not be used. Since there is only one stack/window displayed at once on this
platform, a generic 'go stack' should be used instead.

System Dialogs — answer and ask

The Android engine supports a restricted version of the answer commands — using the standard
Android AlertDialog class.

The answer command can be used in this form:
answer message [with button and ...] [titled title]

This will use the Android standard alert popup with the given buttons and title. The last button
specified will be marked as the default button.

The ask command can be used in this form:
ask [question | password | prompt | with initialAnswer | with hint hint] [titled title |

If neither question nor password is specified, question is assumed. The value entered by the user
will be returned in iz. If the user cancelled the dialog, the result will contain cancel.

The hint can be used to specify background text that will disappear as soon as the user enters data.
The hint will never be returned.

Note: You cannot nest calls to answer on Android. If you attempt to open an answer dialog while
one is showing, the command will return immediately as if the dialog had been cancelled.

Cross-Mobile Note: The answer and ask commands work the same way on both iOS and Android.

Non-file URL access

The Android engine has support for fetching urls, posting to urls and downloading urls in the
background. Note that the Android engine does not support libUrl, and as such there are some
differences between url handling compared to the desktop.

16

Revision 82 — 2013-05-31

The Android engine supports the following non-file URL access methods:
* GET for http, https and ftp URLs
« POST for http and https URLs

Note: When using URLs for these protocols be aware that the Android system functions used to
provide them are much stricter with regards the format of URLs — they must be of the appropriate
form as specified by the RFC standards. In particular, in FTP urls, be careful to ensure you
urlEncode any username and password fields appropriately (libUrl will allow characters such as
‘@' in the username portion and still work — Android will not be so forgiving).

To fetch the google home page you can do:

put url ("http://www.google.com") into tGooglePage

To post data to a website, you can use:
post tData to url tMyUrl

To download a url in the background, you can use:
load url tMyUrl with message "myUrlDownloadFinished"

Note that, the callback message received after a load url will be of the form:
myUrlDownloadFinished url, status, data

Here, data is the actual content of the url that was fetched (assuming an error didn't occur).

Progress updates on ongoing url requests are communicated via the urlProgress message. This
message is periodically sent to the object whose script initiated the operation. It can have the form:

urlProgress url, "contacted"
urlProgress url, "requested”
urlProgress url, "loading", bytesReceived , [bytesTotal |
urlProgress url, "uploading", bytesReceived, [bytesTotal |
urlProgress url, "downloaded"
urlProgress ur/, "uploaded"
urlProgress url, "error", errorMessage
Note that pBytesTotal will be empty if the web server does not send the total data size.

You can also download a url direct to a file — this is particularly useful when downloading large
files since the normal 'url' chunk downloads into memory. To do this use:

libUrIDownloadToFile url, filename

Unlike the 1libUrl command of the same name, this command will block until the download is
complete, and will notify progress through the urlProgress message as described above.

When using GET and POST with http(s) URLs you can use the httpHeaders global property to
configure the headers to send. This works the same as the desktop engine, any specified headers
overriding those of the same key that would normally be sent, and any new keys being appended.

Cross-Mobile Note: The url handling functionality works the same way on both iOS and Android.

17

http://www.google.com/

Revision 82 — 2013-05-31

Externals

The revZip, revXML, dbSqlite (via revDB) and dbMysql (via revDB) externals can be used on
Android.

To include these components, simply check the appropriate boxes on the Android Standalone
Settings Pane.

18

Revision 82 — 2013-05-31

Android Specific Engine Features

This version of the LiveCode Android engine includes a number of features specified to Android
devices. These are described in the following sections.

Limitations

Apart from the list of general engine features that do not currently work in the LiveCode Android
environment, the current release has the following limitations that we are looking to lift in future
releases:

* no ability to configure the status bar visibility
* no access to gps
* no native control support

* no support for clearing pending interactions

Multi-touch events
Touches can be tracked in an application by responding to the following messages:
* touchStart id
* touchMove id, x, y
* touchEnd id
» touchRelease id

The id parameter is a number which uniquely identifies a sequence of touch messages
corresponding to an individual, physical touch action. All such sequences start with a touchStart
message, have one or more touchMove messages and finish with either a touchEnd or a
touchRelease message.

A touchRelease message is sent instead of a touchEnd message if the touch is cancelled due to an
incoming event such as a phone-call.

No two touch sequences will have the same id, and it is possible to have multiple (interleaving)
such sequences occurring at once. This allows handling of more than one physical touch at once
and, for example, allows you to track two fingers moving on the device's screen.

The sequence of touch messages is tied to the control in which the touch started, in much the same
way mouse messages are tied to the object a mouse down starts in. The test used to determine what
object a touch starts in is identical to that used to determine whether the pointer is inside a control.

In particular, invisible and disabled controls will not considered viable candidates.

Cross-Mobile Note: Touch messages work the same way on both Android and iOS platforms.

Mouse events

The engine will interpret the first touch sequence in any particular time period as mouse events in
the obvious way: the start of a touch corresponding to pressing the primary mouse button, and the
end of a touch corresponding to releasing the primary mouse button.

19

Revision 82 — 2013-05-31

This means that all the standard LiveCode controls will respond in a similar way as they do in the
desktop version — in particular, you will receive the standard mouse events and the mouseLoc will
be kept updated appropriately.

Note that touch messages will still be sent, allowing you to choose how to handle input on a per-
control basis.

Cross-Mobile Note: Mouse messages work the same way on both Android and iOS platforms.

Motion events

An application can respond to any motion events by using the following messages:
* motionStart motion
* motionEnd motion
* motionRelease motion

Here motion is the type of motion detected by the device. At present, the only motion that is
generated is “shake”.

When the motion starts, the current card of the defaultStack will receive motionStart and when the
motion ends it will receive motionEnd. In the same vein as the touch events, motionRelease is sent
instead of motionEnd if an event occurs that interrupts the motion (such as a phone call).

Cross-Mobile Note: Motion messages work the same way on both Android and iOS platforms.

Hardware button support

When the user presses the hardware 'Back’ key, a backKey message is sent to the current card of the
default stack. If the message is passed or not handle, the engine will automatically quit.

When the user presses the hardware 'Menu' key, a menuKey message is sent to the current card of
the default stack.

When the user presses the hardware 'Search' key, a searchKey message is sent to the current card of
the default stack.

System alert support

To perform a system alert, use the beep command.

Vibration support
mobileVibrate [numberOfTimes]

To make the device vibrate, use the command mobileVibrate. The parameter numberOfTimes
determines the number of times you wish the device to vibrate. This defaults to 1.

Cross-Mobile Note: This feature works in the same way on both Android and iOS platforms.

Accelerometer support

Note that as of 5.5-dp-1, this syntax has been deprecated in favour of the new generic sensor syntax.
See the section “Sensor tracking”.

20

Revision 82 — 2013-05-31

You can enable or disable the device's internal accelerometer by using:
mobileEnableAccelerometer
mobileDisableAccelerometer

Enabling the accelerometer will cause accelerationChanged events to be delivered to the current
card of the defaultStack at a frequent interval.

The accelerationChanged message takes four parameters (Note this has changed from a single
parameter in 5.5-dp-1):

X,V,Z,t

Here x, y and z are the acceleration along those axes relative to gravity. The t value is a relative
measurement of how much time has passed — you can use the difference between the time values in
two accelerationChanged events to give an indication of how much time passed between the
samples.

Cross-Mobile Note: This feature works in the same way on both Android and iOS platforms,
although may require different calibrations as the underlying sensors will vary.

Location tracking (GPS)

Note that as of 5.5-dp-1, this syntax has been deprecated in favour of the new generic sensor syntax.
See the section “Sensor tracking”.

Determining support

To determine if a device has the necessary hardware support for tracking location using GPS use the
mobileCanTrackLocation() function.

This returns true if location can be tracked, or false otherwise.

Activating and deactivating tracking

Assuming the hardware is present, tracking of the current location of the device can be activated
and deactivated by using:

mobileStartTrackingLocation
mobileStopTrackingLocation

Starting to track location may request permission from the user to access the GPS hardware
depending on system settings.

Detection location changes

You can detect changes in location by handling the locationChanged message. This message is sent
to the current card of the default stack.

If location tracking cannot be started (typically due to the user 'not allowing' access to
CoreLocation) then a trackingError message is sent instead.

21

Revision 82 — 2013-05-31

Querying the location

While location tracking is active, the current location of the device can be fetched by using the
mobileCurrentLocation() function.

If location tracking has not been enabled this function returns empty.
If location tracking is active then it returns an array with the following keys:

* horizontal accuracy — the maximum error in meters of the position indicated by longitude
and latitude

* latitude — the latitude of the current location, measured in degrees relative to the equator.
Positive values indicate positions in the Northern Hemisphere, negative values in the
Southern.

* longitude — the longitude of the current location, measured in degrees relative to the zero
meridian. Positive values extend east of the meridian, negative values extend west.

* vertical accuracy — the maximum error in meters of the altitude value.

* altitude — the distance in meters of the height of the device relative to sea-level. Positive
values extend upward of sea-level, negative values downward.

* timestamp — the time at which the measurement was taken, in seconds since 1970.

If the latitude and longitude could not be measured, those keys together with the horizontal
accuracy key will not be present. If the altitude could not be measured, that key together with the
vertical accuracy will not be present.

Heading tracking (digital compass)

Note that as of 5.5-dp-1, this syntax has been deprecated in favour of the new generic sensor syntax.
See the section “Sensor tracking”.

Determining support

To determine if a device has the necessary hardware support for tracking heading using a digital
compass use the mobileCanTrackHeading() function.

This returns true if location can be tracked, or false otherwise.

Activating and deactivating tracking

Assuming the hardware is present, tracking of the current heading of the device can be activated
and deactivated by using:

mobileStartTrackingHeading
mobileStopTrackingHeading

Starting to track heading may request the user to calibrate the magnetometer, see the calibration
section for more details.

22

Revision 82 — 2013-05-31

Detection heading changes

You can detect changes in heading by handling the headingChanged message. This message is sent
to the current card of the default stack.

If heading tracking cannot be started (typically due to a lack of calibration) then a trackingError
message is sent instead.

Querying the heading

While heading tracking is active, the current heading of the device can be fetched by using the
mobileCurrentHeading() function.

If heading tracking has not been enabled this function returns empty.
If heading tracking is active then it returns an array with the following keys:

* accuracy - The maximum deviation (measured in degrees) between the reported heading and
true geomagnetic heading. The lower the value, the more accurate the reading.

* magnetic heading - The heading (measured in degrees) relative to magnetic north.

* true heading - The heading (measured in degrees) relative to true north. If the true heading
could not be calculated (usually due to heading tracking not being enabled, or lack of
calibration), this key will not be present.

* heading - The true heading if available, otherwise the magnetic heading.
* X,), z- The geomagnetic data (measured in microteslas) for each of the x, y and z axes.

* timestamp - The time at which the measurement was taken, in seconds since 1970.

Sensor tracking

As of LiveCode 5.5-dp-1, sensor support has been unified into a new set of easy to use syntax.
Four different sensor can be tracked:

* location — tracks the location of the device using either GPS or network triangulation
* heading — tracks the heading of the device using the digital compass

* acceleration — tracks the devices motion using the accelerometer

* rotation rate — tracks the rotation of the device

The names detailed in bold will be used to reference the sensors.

Sensor availability
mobileSensorAvailable(sensor)

The function mobileSensorAvailable will return true or false depending upon the availability of the
given sensor. Here, sensor is the name of the sensor you wish to check as detailed in the previous
section.

23

Revision 82 — 2013-05-31

Start tracking sensor
mobileStartTrackingSensor sensor, [loosely]

If a sensor is available, you can start tracking it using the command mobileStartTrackingSensor.
Once tracking a sensor, periodic messages will be sent to the card specifying any changes. This
also enables you to query the reading of a sensor at any point.

The parameter /loosely is a boolean determining how detailed the readings from the sensors should
be.

* true - readings will be determined without using accurate (but power consuming) sources
such as GPS

» false - readings will be determined using accurate(but power consuming) sources such as
GPS

Stop tracking sensor
mobileStopTrackingSensor sensor

You can stop tracking a sensor at any point using the command mobileStartTrackingSensor. This
ill mean that the periodic update messages will no longer be dent and that you can no longer query
the sensor for readings.

Sensor update messages

Once mobileStartTrackingSensor has been called, update messages will be sent to the current
card, detailing the sensors latest reading.

locationChanged /latitude, longitude, altitude
* latitude — the latitude of the device
* Jongitude — the longitude of the device
* altitude — the altitude of the device
headingChanged /eading

* heading - the heading of the device, in degrees relative to true north if available, otherwise
relative to magnetic north

accelerationChanged x, y, z
e x - the rate of acceleration around the x axis, in radians/second
* y - the rate of acceleration around the x axis, in radians/second
ez - the rate of acceleration around the x axis, in radians/second
rotationRateChanged x, y, z
* x - the rate of rotation around the x axis, in radians/second
* y - the rate of rotation around the y axis, in radians/second
ez - the rate of rotation around the z axis, in radians/second

If at any point there is an error tracking one of the sensors, the trackingError message will be sent.

24

Revision 82 — 2013-05-31

trackingError sensor, errorMessage

Getting a sensor reading

In addition to the update messages that are sent, you can get the reading of any sensor you are
tracking using the function mobileGetSensorReading

mobileSensorReading(sensor, [detailed])

The boolean parameter detailed determines the amount of detail present in the data returned. If this
is false, the data returned is a comma separated list. If true, an array is returned. By default,
detailed is false.

The data returned depends upon the sensor.

Location - a comma separated list of the latitude, longitude and altitude of the device. If detailed is
true an array containing the keys latitude, longitude, altitude, time stamp, horizontal accuracy,
vertical accuracy, speed and course is returned. If the latitude and longitude could not be measured,
those values together with the horizontal accuracy key will not be present. If the altitude could not
be measured, that value together with the vertical accuracy will not be present.

Heading - the heading of the device in degrees. If detailed is true an array containing the keys
heading, magnetic heading, true heading, time stamp, X, y, z and accuracy is returned.

Acceleration - a comma separated list of the acceleration in the x, y and z axes. If detailed is true
an array containing the keys x, y, z and timestamp is returned.

Rotation Rate - a comma separated list of the rate of rotation around the x, y and z axes. If detailed
is true an array containing the keys x, y, z and timestamp is returned.

Cross-Mobile Note: This feature works in the same way on both Android and iOS platforms,
although may require different calibrations as the underlying sensors will vary.

Photo album and camera support

Taking or choosing photos
You can hook into Android's native gallery or camera application by using:
mobilePickPhoto source
Here source is one of:
» library — the user picks a photo using the Android Gallery application
* album — the user picks a photo using the Android Gallery application
* camera — the user is prompted to take a picture using the Android Camera application

If the source type isn't available on the target device, the command will return with result "source
not available". If the user cancels the pick, the command will return with result "cancel”. Otherwise
a new image object will be created on the current card of the default stack containing the chosen
image.

Note: The image object is cloned from the templatelmage, so you can use this to configure settings
before calling the picker.

25

Revision 82 — 2013-05-31

Saving photos to the users album
You can save an image to the user's photo album by using:
mobileExportlmageToAlbum imageTextOrControl, [filename]
Where imageTextOrControl is one of:
* the binary data of an image (the 'text') in PNG, GIF or JPEG format
* along id of an image object containing an image in PNG, GIF or JPEG format

The optional filename is the name under which the image file is to be saved on the Android file
system. A random name is generated if a name is not specified.

The command will return empty in the result if exporting succeeded. Otherwise it will return one
of:

* could not find image — the image object could not be found
* not an image — the object was not an image
* not a supported format — the image object in not of PNG, GIF or JPEG format

* export failed — an error occurred while trying to save the image to the album

Keyboard Input

Support for basic (soft) keyboard input is provided automatically. The current Android soft
keyboard will be shown when a field is focused, and hidden again when there is no focused field.

Note: At this time, only simple keyboards that provide a one-to-one mapping between keys and
characters will function correctly. General support for Android's rich input method framework is
planned for a future release.

Configuring keyboard type

You can configure the type of keyboard that will be displayed by using the
mobileSetKeyboardType command:

mobileSetKeyboardType type
Where type is one of:
* default — the normal keyboard
» alphabet — the alphabetic keyboard
* numeric / decimal — the numeric keyboard with punctuation
* number — the number pad keyboard
* phone — the phone number pad keyboard
* email — the email keyboard

The keyboard type setting takes effect the next time the keyboard is shown — it does not affect the
currently displaying keyboard, if any.

If you wish to configure the keyboard options based on the field that is being focused, simply use
the commands in an openField handler of the given field. The keyboard is only shown after this

26

Revision 82 — 2013-05-31

handler returns, so it is the ideal time to configure it.

Cross-Mobile Note: You can use the same command to configure the keyboard on both Android and
i0S.

Activation notifications

The following messages will be sent to the current card of the default stack when the keyboard is
shown or hidden:

keyboardActivated
keyboardDeactivated

Handle these messages to move controls or change the display layout to take account of the
restricted screen area that will be available.

Orientation handling

The Android engine includes support for automatic handling of changes in orientation and in so
doing gains use of the smooth Android standard animation rotation animation.

Auto-rotation support

You can configure which orientations your application supports, and also lock and unlock changes
in orientation.

The engine will automatically rotate the screen whenever the following are true.
* it detects an orientation change
* the orientation is in the currently configured 'allowed' set
+ the orientation lock is off

Such a rotation may result in a resizeStack message being sent since rotating at 90 degrees switches
width and height.

Querying orientation

You can fetch the current device orientation using the mobileDeviceOrientation() function. This
returns one of:

* unknown — the orientation could not be determined
* portrait — the device is being held upward with the home button at the bottom
* portrait upside down — the device is being held upward with the home button at the top
* landscape left — the device is being held upward with the home button on the left
* landscape right — the device is being held upward with the home button on the right
* face up — the device is lying flat with the screen upward
* face down — the device is lying flat with the screen downward
Similarly, you can fetch the current interface orientation using the mobileOrientation() function.

This returns one of portrait, portrait upside down, landscape left and landscape right. With the

27

Revision 82 — 2013-05-31

same meanings as for device orientation.

Controlling auto-rotation
To configure which orientations your application supports use:
mobileSetAllowedOrientations orientations

Here orientations must be a comma-delimited list consisting of at least one of portrait, portrait
upside down, landscape left and landscape right. The setting will take effect the next time an
orientation change is effected — the interface's orientation will only be changed if the new
orientation is among the configured list. You can query the currently allowed orientations with the
mobileAllowedOrientations() function.

To lock or unlock orientation changes for a time use:
mobileLockOrientation and mobileUnlockOrientation

The orientation lock is nestable, and when an unlock request causes the nesting to return to zero, the
interface will rotate to match the devices current orientation (assuming it is in the set of allowed
orientations). You can query the current orientation lock state with the mobileOrientationLocked()
function.

Note: Due to a limitation in the OS, 'landscape left' and 'portrait upside-down' orientations are
only supported on Android 2.3 and later.

Orientation changed notification

An application will receive an orientationChanged message if the device detects a change in its
position relative to the ground, and you can use the mobileDeviceOrientation() function to find out
the current orientation. This message is sent to the current card of the default stack.

The orientationChanged message is sent before any automatic interface rotation takes place thus
changes to the orientation lock state and allowed set can be made at this point and still have an
effect. If you wish to perform an action after the interface has been rotated, then either do so on
receipt of resizeStack, or by using a send in 0 millisecs message.

Cross-Mobile Note: The orientation feature works in the same way on both Android and iOS
platforms.

Device specific orientations

Internally, the Android engine uses the accelerometer to determine the orientation of a device.
However, the accelerometer is not calibrated the same way on every device. For example, consider
a standard smart phone that is primarily used in portrait mode. The accelerometer points are
typically:

* Portrait—0

* Reverse landscape — 90
* Reverse portrait — 180
* Landscape 270

Compare this with a standard tablet device which is primarily used in landscape mode:

28

Revision 82 — 2013-05-31

* Portrait — 90

* Reverse landscape — 180
* Reverse portrait — 270

* Landscape — 0

On certain devices, the orientations do not follow the same order, which causes the orientations to
be handled incorrectly. For example, one device tested has the following mapping:

* Portrait— 180

* Reverse landscape — 90
* Reverse portrait — 0

* Landscape — 270

In order to correct orientation handling for this device, you must include a file named

lc_device config.txt in your APK bundle. Do this by adding the file in the Copy Files pane of the
Standalone Builder. This file is used to map a device's to orientation to accelerometer value and is
parsed by the Android engine on startup. If the current device matches an entry in the file, the
orientation settings in that entry will be used.

An entry in the orientation file looks like the following:

device=<MANUFACTURER>|<MODEL>|<DEVICE><VERSION.RELEASE>|
<VERSION.INCREMENTAL>

orientation_map=<portrait rotation>,<landscape rotation>,[<portrait reverse orientation>],
[<landscape reverse orientation>]

The device entry is used to identify specific devices. The entries are pipe separated and can be
fetched using the function mobileBuildInfo (see section Device Information). If any of these
values are left empty, they will act as a wildcard, matching any device. If all parts of the device line
match the current device, then the following lines up to the next device line will be applied.

The orientation map is a comma list of accelerometer values. The first item will be interpreted as
the screen rotation when in its default portrait orientation, the second when in its default landscape
orientation.

For the aforementioned tablet device, the following line would be used:

orientation_map=180,270

Without this line, the default handling would assume portrait at 0 degrees and landscape at 270, so
reporting landscape orientation correctly, but not portrait. The last two items are optional, and
define the accelerometer readings for reverse portrait and reverse landscape.

A default Ic_device config.txt file is included in the runtime folder. The contents of this file are
prepended onto any Ic_device config.txt file specified in the Copy Files pane of the Standalone
builder, meaning that any user added orientation handling for a specific device will override the
defaults.

Resolution handling

The engine makes no attempt to scale or adjust layout of stacks based on the resolution or density of

29

Revision 82 — 2013-05-31

the display the application is running on.

A single pixel on the desktop maps to a single screen pixel on Android, giving you full access to all
the pixels on a device's display regardless of what dpi it might have.

When a stack is displayed, it will receive a resizeStack message resizing to the full area of the
screen (minus status bar).

You can use the screenRect, the working screenRect and the effective working screenRect
properties to find out the current full size of the screen, the area not including the status bar and the
area not including the status bar and keyboard respectively.

The pixel density of the devices screen can be queried using mobilePixelDensity(). This function
returns the number of hardware pixels per logical pixels.

Text messaging support
Use the command mobileComposeTextMessage to launch the default text messaging app.
mobileComposeTextMessage recipients, [body]

The recipients is a comma separated list of phone numbers you want the message to be sent to. The
optional bhody is the content of the message you wish to sent.

Note that once you've called the mobileComposeTextMessage command you have no more control
over what the user does with the message — they are free to modify it and the addresses as they see
fit.

Upon completion of a compose request, the result is set to one of the following:
* sent - the text was sent successfully
* cancel - the text was not sent, and the user elected not to save it for later
» failed - the text could not be sent
» false - the device does not have text messaging functionality

You can determine if the device has the text messaging client configured using the function
mobileCanComposeTextMessage(). This returns true if the client is configured.

Email composition

Basic support

A version of revMail has been implemented that hooks into the iPhone's MessageUI framework.
Using this, you can compose a message and request that the user send it using their currently
configured mail preferences.

The syntax of revMail is:
revMail toAddress, [ccAddress, | subject, | messageBody |1 |

Where the address fields are comma separated lists of email address. If any of the parameters are
not present, the empty string is used instead.

As it is not possible to determine if the user sent the email or not, upon return, the result will be
unknown.

30

Revision 82 — 2013-05-31

Note that once you've called the revMail command you have no more control over what the user
does with the message — they are free to modify it and the addresses as they see fit.

Advanced support

More complete access to Android's mail composition interface is gained by using one of the
following commands:

mobileComposeMail subject, [recipients, [ccs, [bees, [body, [attachments 1]]]]
mobileComposeUnicodeMail subject, [recipients, [ccs, [bces, [body, | attachments 1]]]]
mobileComposeHtmlMail subject, [recipients, [ccs, [bees, [body, [attachments 1]]]]

All commands work the same, except different variants expect varying encodings for the subject
and body parameters:

» subject — the subject line of the email. If the Unicode form of the command is used, this
should be UTF-16 encoded text.

* recipients —a comma -delimited list of email addresses to place in the email's 'To' field.
* ccs —acomma-delimited list of email addresses to place in the email's 'CC' field.
* bces —a comma-delimited list of email addresses to place in the email's 'BCC' field.

* body — the body text of the email. If the Unicode variant is used this should be UTF-16
encoded text; if the HTML variant is used then this should be HTML.

* attachments — either empty to send no attachments, a single attachment array or a one-based
numeric array of attachment arrays to include.

The attachments parameter consists of either a single array, or an array of arrays listing the
attachments to include. A single attachment array should consist of the following keys:

* data — the binary data to attach to the email (not needed if file present)

* file — the filename of the file on disk to attach to the email (not needed if data present)
* type —the MIME-type of the data.

* name — the default name to use for the filename displayed in the email

If you specify a file for the attachment, the engine's does its best to ensure the least amount of
memory is used by asking the OS to only load it from disk when needed. Therefore, this should be
the preferred method when attaching large amounts of data.

For example, sending a single attachment might be done like this:

put "Hello World!" into tAttachment["data"]

put "text/plain" into tAttachment|"type"]

put "Greetings.txt" into tAttachment["name"]

iphoneComposeMail tSubject, tTo, tCCs, tBCCs, tBody, tAttachment
If multiple attachments are needed, simply build an array of attachment arrays:

put "Hello World!" into tAttachments[1]["data"]

put "text/plain" into tAttachments[1]["type"]

31

Revision 82 — 2013-05-31

put "Greetings.txt" into tAttachments[1]["name"]

put "Goodbye World!" into tAttachments[2]["data"]

put "text/plain" into tAttachments[2]["type"]

put "Farewell.txt" into tAttachments[2]["name"]
mobileComposeMail tSubject, tTo, tCCs, tBCCs, tBody, tAttachments

As it is not possible to determine if the user sent the email or not, upon return, the result will be
unknown.

Some devices will not be configured with email sending capability. To determine if the current
device is, use the mobileCanSendMail() function. This returns true if the mail client is configured.

Cross-Mobile Note: The compose mail features work in a similar fashion on both Android and iOS.

File and folder handling

In general the low-level support for handling files and folders in the Android engine is the same as
that on the desktop. All the usual syntax associated with such operations will work. Including:

» open file/read/write/seek/close file

* delete file

+ create folder/delete folder

* setting and getting the folder

+ listing files and folders using the [detailed | files and the [detailed] folders
» storing and fetching binfile: and file: urls

However, it is important to be aware that the Android imposes strict controls over what you can and
cannot access.

An Android application is installed on the phone in the form of its package (which is essentially a
zip file) — in particular, this means that any assets that are included are not available as discrete files
directly in the native filesystem. To make this easier to deal with, the engine essentially 'virtualizes'
the asset files you include allowing (read-only) manipulation with all the standard LiveCode file
and folder handling syntax.

To access the assets you have included within your application, use filenames relative to
specialFolderPath(“engine”). For example, to load in a file called 'foo.txt' that you have included
in the Files and Folders list, use:

put url (“file:” & specialFolderPath(“engine”) & slash & “foo.txt”) into tFileContents

Or if you want to get a list of the image files that you have included within a folder myimages in the
app package, use something like:

set the folder to specialFolderPath(“engine”) & slash & “myimages”
put the files into tMyImages

Other standard file locations can be queried using the specialFolderPath() function. The following
paths are supported on Android at this time:

* engine — the (virtual) path to the engine and its assets

32

Revision 82 — 2013-05-31

* documents — the path to a folder to use for per-application data files
* cache — the path to a folder to use for transient per-application data files

Note: The Android filesystem is case-sensitive — this is different from (most) Mac installs and
Windows so take care to ensure that you consistently use the same casing of filenames when
constructing them.

Cross-Mobile Note: The special handling the engine does of asset files on Android means that you
can use the same code to access such files on both iOS and Android — on both platforms such files
are accessible relative to the same base folder specialFolderPath(“engine”).

Basic sound playback support

Basic support for playing sounds has been added using a variant of the play command. A single
sound can be played at once by using:

play soundFile [looping]

Executing such a command will first stop any currently playing sound, and then attempt to load the
given sound file. If looping is specified the sound will repeat forever, or until another sound is
played.

If the sound playback could not be started, the command will return “could not play sound” in the
result.

To stop a sound that is currently playing, simply use:
play empty
The volume at which a sound is played can be controlled via the playLoudness global property.

The overall volume of sound playback depends on the current volume setting the user has on their
device.

This feature uses the built-in sound playback facilities on Android and as such has support for a
variety of formats including MP3's.

You can monitor the current sound being played by using the sound global property. This will
either return the filename of the sound currently being played, or “done” if there is no sound
currently playing.

Cross-Mobile Note: This feature works in the same way on both Android and iOS platforms,
although the list of supported audio formats will vary between devices.

Multi-channel sound support

In addition to basic sound playback support, there is also support for playing sounds on different
channels.

Playing Sounds
To play a sound on a given channel use the following command:
mobilePlaySoundOnChannel sound, channel, type

Where sound is the sound file you wish to play, channel is the name of the channel to play it on and

33

Revision 82 — 2013-05-31

type is one of:

* now — play the sound immediately, replacing any current sound (and queued sound) on the
channel.

* next — queue the sound to play immediately after the current sound, replacing any previously
queued sound. If no sound is playing the sound is prepared to play now, but the channel is
immediately paused — this case allows a sound to be prepared in advance of it being needed.

* looping — play the sound immediately, replacing any current sound (and queued sound) on
the channel, and make it loop indefinitely.

If a sound channel with the given name doesn't exist, a new one is created. When queuing a sound
using next, the engine will 'pre-prepare' the sound long before the current sound is played, this
ensures minimal latency between the current sound ending and the next one beginning.

If an empty string is passed as the sound parameter, the current and scheduled sound on the given
channel will be stopped and cleared.

When a sound has finished playing naturally (not stopped/replaced) on a given channel, a
soundFinishedOnChannel message is sent to the object which played the sound:

soundFinishedOnChannel channel, sound

The message is sent after the switch has occurred between a current and next sound on the given
channel. This makes it is an ideal opportunity to schedule the next sound on the channel, thus
allowing continuous and seamless playback of sounds.

To stop the currently playing sound, and to clear any scheduled sound, on a given channel use:
mobileStopPlayingOnChannel channel

To pause the currently playing sound on a given channel use:
mobilePausePlayingOnChannel channel

To resume the current sound's playback on a given channel use:

mobileResumePlayingOnChannel channel

Channel Properties

To control the volume of a given sound channel use the following:
mobileSetSoundChannelVolume channel, volume
mobileSoundChannelVolume(channel)

Here channel is the channel to affect, and volume is an integer between 0 and 100 where 0 is no
volume, 100 is full volume.

Changing the volume affects the currently playing sound and any sounds played subsequently on
that channel.

Note that you can set the volume of a non-existant channel and this will result in it being created.
This allows you to set the volume before any sounds are played. If you attempt to get the volume of
a non-existent channel, however, empty will be retuned.

To find out what sounds (if any) are currently playing and are scheduled for playing next on a given
channel use:

34

Revision 82 — 2013-05-31

mobileSoundOnChannel(c/iannel)
mobileNextSoundOnChannel(channel)

These will return empty if no sound is currently (scheduled for) playing (or the channel doesn't
exist).

To query a channel's current status use mobileSoundChannelStatus(). This returns one of the
following:

* stopped — there is no sound currently playing, nor any sound scheduled to be playing
* paused — there are sounds scheduled to be played, but the channel is currently paused

* playing — a sound is currently playing on the channel

Managing Channels

To get a list of the sound channels that currently exist use:
mobileSoundChannels()

This returns a return-delimited list of the channel names.

Sound channels persist after any sounds have finished playing on them, retaining the last set volume
setting. To remove a channel from memory completely use:

mobileDeleteSoundChannel channel

Sound channels only consume system resources when they are playing sounds, thus you don't need
to be concerned about having many around at once (assuming most are inactive!).

Cross-Mobile Note: This feature works in the same way on both Android and iOS platforms,
although the list of supported audio formats will vary between devices.

Video playback support

Basic support for playing videos has been added using a variant of the play command. A video file
can be played by using:

play (video-file | video-url)

The video will be played fullscreen, and the command will not return until it is complete, or the user
dismisses it.

If a path is specified it will be interpreted as a local file. If a url is specified, then it must be either
an 'http', or 'https' url. In this case, the content will be streamed.

The playback uses Android's built-in video playback support and as such can use any video files
supported by the device.

Appearance of the controller is tied to the showController of the templatePlayer. Changing this
property to true or false, will cause the controller to either be shown, or hidden.

When a movie is played without controller, any touch on the screen will result in a movieTouched
message being sent to the object's whose script started the video. The principal purpose of this
message is allow the play stop command to be used to stop the movie. e.g.

on movieTouched

35

Revision 82 — 2013-05-31

play stop
end movieTouched
Note: The movieTouched message is not sent if the video is played with showController set to true.

Playing a video can be made to loop by setting the looping of the templatePlayer to true before
executing the play video command.

URL launching support

Support for launching URLs has been added. The launch url command can now be used to request
the opening of a given url:

launch url ur/ToOpen

When such a command is executed, the engine first checks to see if an application is available to
handle the URL. If no such application exists, the command returns "no association" in the result.
If an application is available, the engine requests that it launches with the given url.

Using this syntax it is possible to do things such as:
* open the mobile browser with a given Attp: url
* open the dialer with a given phone number using a fel: url

If you are trying to launch a file using an external viewer, you need to make sure the file is visible
to the viewer (i.e. not in the apps private file system). A standard approach to this is to store the
desired file on the SD card (/sdcard/). If you app is writing to an external location, have the “Write
External Storage” option ticked in the standalone builder.

Font querying support

The list of available fonts can now be queried by using the fontNames function. This returns a
return-delimited list of all the available font families.

The list of available styles can be queried by using the fontStyles function:
fontStyles(fontFamily, 0)

This will return the list of all font names in the given family. It is these names which should be used
as the value of the textFont property.

Hardware and system version query support

You can fetch information about the current hardware and system version using the standard
LiveCode syntax in the following ways.

To determine what processor an application is running on use the processor. For the Android
engine this will always be ARM, regardless of whether running on a virtual or real device.

To determine the type of device an application is running on use the machine. This will return the
(manufacturer's name) for the device. For example, if running on a Google Nexus One, the string
will be Nexus One.

To determine the version of Android the application is running on, use the systemVersion. For
example, if the device has Android 2.2 installed, this property will return 2.2; if the device has

36

Revision 82 — 2013-05-31

Android 2.3.1 installed, this property will return 2.3.1.

Idle Timer configuration

By default, Android will dim the screen and eventually lock the device after periods of no user-
interaction.

To control this behavior, use the following commands:
mobileLockldleTimer
mobileUnlockIdleTimer

Locking the idle timer increments an internal lock count, while unlocking the idle timer decrements
the lock count. When the lock count goes from 0 to 1, the idleTimer is turned off; when the lock
count goes from 1 to 0, the idleTimer is turned on.

To determine whether the idleTimer is currently locked (i.e. turned off) use
mobileldleTimerLocked().

Locale and system language query support

You can query the preferred language using the mobilePreferredLanguages() function. This
returns a standard language tag (for example "en", "fr", "de", etc.)

You can query the currently configured locale using the mobileCurrentLocale() function. This
returns a standard locale tag (for example "en_ GB", "en_US", "fr FR", etc.)

Querying camera capabilities
To find out the capabilities of the current devices camera(s), use the following function:
mobileCameraFeatures([camera |)

The camera parameter is a string containing either "rear" or "front". In this case, the capabilities of
that camera are returned. These take the form of a comma-delimited list of one or more of the
following:

* photo — the camera is capable of taking photos
* video — the camera is capable of recording videos
* flash — the camera has a flash that can be turned on or off
If the returned string is empty it means the device does not have that type of camera.

If no camera parameter is specified (or is empty), then a comma-delimited list of one or more of the
following is returned:

» front photo — the front camera can take photos

front video — the front camera can record video

front flash — the front camera has a flash
* rear photo — the rear camera can take photos

* rear video — the rear camera can record video

rear flash — the rear camera has a flash

37

Revision 82 — 2013-05-31

If the returned string is empty it means the device has no cameras.

Note: At this time, Android can only detect whether there are front and/or back cameras and
whether they can take photos.

Clearing pending interactions

As interaction events (touch and mouse messages) are queued, it is possible for such messages to
accumulate when they aren't needed. In particular, when executing 'waits', 'moves' or during card
transitions.

To handle this case, the mobileClearTouches command has been added. At the point of calling, this
will collect all pending touch interactions and remove them from the event queue.

Note that this also cancels any existing mouse or touch sequences, meaning that you (nor the
engine) will not receive a mouseUp, mouseRelease, touchEnd or touchCancel message for any
current interactions.

A good example of when this command might be useful is when playing an instructional sound:
on tellUserInstructions
play specialFolderPath("engine") & slash & "Instruction 1.mp3"
wait until the sound is "done"
mobileClearTouches
end tellUserInstructions

Here, if the mobileClearTouches call was not made, any tough events the user created while the
sound was playing would be queued and then be delivered immediately afterwards potentially
causing unwanted effects.

Status bar configuration support
You can now configure the status bar that appears at the top of the Android screen.
To control the visibility of the status bar use the following commands:
mobileShowStatusBar
mobileHideStatusBar
These commands cause the status bar to be shown and hidden respectively.

Cross-Mobile Note: This feature works in the same way on both Android and iOS platforms.

Contact Access

Support to access and modify the Android contact list has been added as of LiveCode 5.5.1-rc-1.
Interaction with the contact list can be controlled either via native user interfaces or directly from
the LiveCode syntax.

Ul Contact Access Features

Four native user interfaces are available that allow contacts to be created, picked, shown or updated.

38

Revision 82 — 2013-05-31

Creating a Contact

You launch the native Android contact creation dialog by calling the command
mobileCreateContact.

This allows the user to create a contact with the fields that the user considers to be required for the
new contact.

The result of this command returns either "empty" if no contact was created or the ID of a
successfully created contact.

Picking a Contact
The user can select a contact from the contact list by using the mobilePickContact command.
The user is presented with a contact list dialog that shows all the contacts in the contact list.

The result of this command returns either "empty" if no contact was selected or the ID of the
selected contact.

Showing a Contact

It is possible to present the contact details of a contact to the user using the native Android contact
viewer. You launch the contact viewer by calling the command:

mobileShowContact contactID
The dialog is only launched if the provided contactID exists in the contact list.

The result of this command returns either "empty" if no contact with the provided contactID exists,
or the ID of the contact that was viewed.

Updating a Contact

A contact can be pre-populated with information before launching an Android contact creation
dialog by using the command:

mobileUpdateContact contactArray

This feature allows interaction with the contact creation process to be streamlined for the user. If an
application is already aware of some of the contact details that the user has to complete, then that
data can be entered into the new contact automatically.

The information to pre-populate contact information is provided in form of an array. The array
structure is detailed under heading "Contact Array Structure".

The result of this command returns either "empty" if no contact was created or the ID of a
successfully created contact.

Syntax Contact Access Features

The LiveCode syntax supports direct contacts manipulation to create, find, remove a contact and to
read contact data.

Contact Array Structure
The handlers mobileUpdateContact, mobileAddContact and mobileGetContactData all use a

39

Revision 82 — 2013-05-31

common contact array format. The structure of the array is defined as follows:
Person Information
The contact's personal information is stored at the top level of the array and has the following keys.
* firstname - The first name.
* middlename - The middle name.
* lastname - The last name.
* alternatename - The alternative name.
* nickname - The nick name.
* firstnamephonetic - The phonetic transcription of the first name.
* middlenamephonetic - The phonetic transcription of the middle name.
* lastnamephonetic - The phonetic transcription of the last name.
* prefix - The name prefix.
* suffix - The name suffix.
* organization - The name of the organization.
» jobtitle - The job title.
* department - The name of the department.
* message - A person message.
* note - A person note.
E-Mail Addresses

The contact's email addresses are stored in subarrays under the key email. There are three
categories of email address:

* home - The home e-mail address.
e work - The work e-mail address.
e other - An alternative e-mail address.

Each email address category is an integer indexed rray (starting at 1), allowing for a category to
have any number of email addresses stored against it.

So for example, the contact's first home email address will be as follows:
tContactData[“email’][“home”’][1]
Telephone Numbers

The contact's telephone numnbers are stored in subarrays under the key phone. There are ten
categories of phone numbers::

* mobile - The mobile telephone number.
* main - The main telephone number.

* home — The home telephone number.

40

Revision 82 — 2013-05-31

* work — The work telephone number.

* homefax - The home FAX number.

* workfax - The work FAX number.

* otherfax — An alternative FAX number (i0S 5.0 and later).
* pager - The pager number.

* other - An alternative telephone number.

Each phone number category is an integer indexed array (starting at 1), allowing for a category to
have any number of phone numbers stored against it.

So for example, the contact's first mobile phone number will be as follows:
tContactData[“phone”][“mobile”’][1]
Addresses

A contact's addresses are stored as subarrays under the key address. There are three categories of
address:

¢ home — The home address.
e work — The work address.
e other — An alternative address.

Each address category is an integer indexed array (starting at 1), allowing for a category to have any
number of addresses stored against it.

Each individual address has the following keys:
* street - The address's street.
* city - The address's city.
» state - The address's state.
e zip - The address's ZIP code.
* country - The address's country.
* countrycode — The address's country code.
So, for example, the street of the contact's first home address is as follows:
tContactData[“address”][“home”][1][“street]

Adding a Contact

You can add a contact by calling the command mobileAddContact. This allows you to populate the
entries of the new contact record with token,value pair strings of the following form:

mobileAddContact contactArray
The contact array structure is detailed under heading "Contact Array Structure".

The result of this command returns either "empty" if no contact was created or the ID of a
successfully created contact.

41

Revision 82 — 2013-05-31

Finding a Contact
The contact list database can be queried, based on the contact name, using the command:
mobileFindContact contactName

It is possible to provide parts of the contact's name that is to be queried as the argument
contactName. The first letter of the given name or surname would be sufficient to provide a search
for a given contact.

The result of this command returns either "empty" if no contact could be found or a comma
delimited list of IDs of the contacts that match the search.

Removing a Contact
A contact can be removed from the contact list by using the command:
mobileRemoveContact contactID

The result of this command returns either "empty" if no contact with the provided ID could be
found or the ID of the contact that was deleted.

Getting Contact Data
Information stored against a particular contact can be retrieved by calling the function:
mobileGetContactData(contactID)

This function extracts all of the contact fields that are supported in LiveCode and returns them in
form of an array with the array keys representing the tokens and the corresponding array values
representing the contact specific information.

The contact array structure is detailed under heading "Contact Array Structure".

Device Information

The function mobileBuildInfo can be used to fetch information about the current device, such as
the manufacturer and device names.

mobileBuildInfo(property)
The property value can be one of the following:
* BOARD - The name of the underlying board, like "goldfish".
* BOOTLOADER - The system bootloader version number.
* BRAND - The brand (e.g., carrier) the software is customized for, if any.
* CPU_ABI - The name of the instruction set (CPU type + ABI convention) of native code.

* CPU_ABI2 - The name of the second instruction set (CPU type + ABI convention) of native
code.

* DEVICE - The name of the industrial design.
* DISPLAY - A build ID string meant for displaying to the user.
* FINGERPRINT - A string that uniquely identifies this build.

42

Revision 82 — 2013-05-31

* HARDWARE - The name of the hardware (from the kernel command line or /proc).
* HOST

* ID - Either a change list number, or a label like "M4-rc20".

* MANUFATURER - The manufacturer of the product/hardware.

* MODEL - The end-user-visible name for the end product.

* PRODUCT - The name of the overall product.

* RADIO - The radio firmware version number.

¢ SERIAL - A hardware serial number, if available.

* TAGS - Comma-separated tags describing the build, like "unsigned,debug".
* TIME

* TYPE - The type of build, like "user" or "eng".

« USER

Local notifications

Local notifications allow applications to schedule notifications with the operating system. The
notification can be received when the application is running in the foreground, the application is
running in the background or the application is not running at all. The notification is delivered
differently, depending on the mode in which the application is in at the time the notification is
received.

mobileCreateLocalNotification alertBody, alertTitle, alertPayload, alertTime, playSound,
[badgeValue]

Use the command mobileCreateLocalNotification to schedule a notification with the OS.

* alertBody- the text that is to be displayed on the status bar entry that is raised when the
application is not running

* alertTitle - the status bar title text that appears when the application is not running

* alertPayload - a text payload that can be sent with the notification request. This payload is
presented to the user via the localNotificationReceived message

* alertTime - the time at which the alert is to be sent to the application
* playSound - boolean to indicate if a sound is to be played when the alert is received

* badgeValue - the number value to which the status bar logo is to be set.

A return delimited list of all the currently pending notifications can be fetched using the function:
mobileGetRegisteredNotifications().

You can query a given notification using the function mobileGetNotificationDetails.
mobileGetNotificationDetails(notification)

This returns an array with the following entries:

43

Revision 82 — 2013-05-31

* Dbody - status bar entry when the application is not running

 title - the title of the status bar entry

* payload - the text presented to the app via the localNotificationReceived message

* play sound - boolean indicating if a sound is to be played when the notification is received.

* badge value - the number displayed on the status bar icon when the notification is received.
No number will be displayed if this is zero

To cancel a notification use command mobileCancelLocalNotification.
mobileCancelLocalNotification notification

Here, the notification parameter is a value returned by mobileGetRegisteredNotifications().

To cancel all pending notifications, use the command mobileCancelAllLocalNotifications.

When you app receives a notification, the message localNotificationReceived will be sent.
localNotificationReceived message

Here, the message parameter is the payload specified when the notification was created.

If your application is not running when a notification is received, an entry in the Android
notification centre will be created. If a badge number is received with the notification, then that
badge value is displayed on the notification centre icon, but only if the application is not currently
running. When your application is started up, if the notification centre message has not been
dismissed, the localNotificationReceived message will be sent on startup.

If the application is running when a notification is received, localNotificationReceived will be
sent.

Push notifications

Push notifications allow apps to avoid frequently polling for the availability of new remote data by
providing a mechanism whereby notifications can be sent to the mobile device.

Yo must first register with the Google's C2DM service
(http://code.google.com/android/c2dm/signup.html). Once you have successfully signed up for the
service, you must include your account name in the Standalone Builder.

The pushNotificationRegistered message is sent once the application starts up and registers with
the Push Notification Server.

pushNotificationRegistered signature

The signature parameter is the signature of the device. This is the unique device's signature that the
Push Notification Server uses in order to send a notification to the device. This can be fetched at
any point using the function mobileGetDeviceToken().

The application only tries to register with the Push Notification Server if the application was
configured to handle Push Notifications in the Standalone application Builder.

The pushNotificationReceived message is sent once the application receives a push notification
from a Push Notification Server.

pushNotificationReceived message

44

http://code.google.com/android/c2dm/signup.html

Revision 82 — 2013-05-31

Here, the message parameter is the payload specified when the notification was created.

If your application is not running when a notification is received, an entry in the Android
notification centre will be created. If a badge number is received with the notification, then that
badge value is displayed on the notification centre icon, but only if the application is not currently
running. When your application is started up, if the notification centre message has not been
dismissed, the pushNotificationReceived message will be sent on startup.

If the application is running when a notification is received, pushNotificationReceived will be
sent.

The pushNotificationRegistrationError message is handled once the application starts up and
tried, but failed to register with the Push Notification Server.

pushNotificationRegistrationError errorMessage
When receiving a push notification the engine processes the following data fields:

* data.body - the message body displayed in the status bar (default: “User interaction
requested”)

» data.title - the title of the message displayed in the status bar (default: the app label)
* data.badge value - the badged number to display along with the status-bar message

» data.play sound - (true/ false) indicates whether or not a sound should be played when the
notification is received

» data.payload - the message that will be delivered to the app in its remoteAlert handler

Custom URL schemes
Specitying a custom URL allows you app to be woken up when the given URL is invoked.

To specify a custom URL, add the desired URL to the “URL Name” field of the standalone
application builder. For example, if you specify “myURL” as the URL name, then when the URL
myURL.:// is invoked, if installed, your app will be woken.

Extra parameters can be passed in the URL in the following format:
myURL://
myURL://some/path/here
myURL://?foo=1&bar=2
myURL://some/path/here?foo=1&bar=2
If you app is woken by a custom URL, the message urlWakeUp will be sent to the current card.
urlWakeUp uriString

A single parameter will be passed detailing the URL used to launch your app. This value can bet
retrieved at any point using the function mobileGetLaunchURL(). If the app was not launched
from a URL then this will return empty.

Cross-Mobile Note: This feature works in the same way on both Android and iOS platforms.

45

Revision 82 — 2013-05-31

In App Advertising

Ads are supplied by our ad partner inneractive and come in three different types: banner, full screen
and text. Before you can begin placing ads, you must first register your app with inneractive.

To do this, sign up with inneractive at the following URL:
http://runrev.com/store/account/inneractive/. Once successfully signed up with inneractive you
must generate a key for your app. Do this by clicking on the “Add App” tab of the inneractive
dashboard and following the instructions provided.

Once you have a key for your app, you must register this with LiveCode using the
mobileAdRegister command. You will now be ready to place ads, using the mobileAdCreate
command.

Registering Your App Key

Before you can begin creating ads, you must first register your app's unique Interactive identifier.
All ad activity, including any revenue generated, will be logged against this id.

mobileAdRegister appKey

Creating & Managing Ads

Once your app key has been registered, you are now ready to create an ad. To do so, use the
command mobileAdCreate.

mobileAdCreate ad, [type], [topLeft], [metaData]
The parameters are as follows:
* type: The type of ad. One of "banner", "text" or "full screen". Defaults to "banner".

* name: The name of the ad to create. This will be used to reference the ad throughout its
lifetime.

* topLeft: The location in pixels of the top left corner of the ad. Defaults to 0,0.
* metaData: An array of values that will be used to target the ad. The keys are as follows:

o refresh: A value in seconds defining how often the ad will refresh, between 30 and 300.
Defaults to 120.

o age: An integer defining the expected age of the target user.

o gender: The expected gender of the target user. The allowed values are M, m F, f, Male,
Female.

o distribution id: The distribution Channel ID (559 for banner ads and full screen ads,
600 for text ads).

© phone number: The user’s mobile number (MSISDN format, with international prefix).

o keywords: Keywords relevant to this user’s specific session (comma separated, without
spaces).

The ad support and internet permissions checkboesx must be ticked in the Standalone Application
Settings. It is also recommended that both the fine and coarse location checkboxes are ticked. This
allows the ad served to be tailored to the user's location.

46

http://runrev.com/store/account/inneractive/
http://inner-active.com/

Revision 82 — 2013-05-31

Ads can be deleted at any time using to command mobileAdDelete.
mobileAdDelete ad

You can get and set the top left of an ad using the following:
mobileAdGetTopLeft(ad)
mobileAdSetTopLeft(ad, topLef?)

The top left is the pixel coordinates of the top left corner of the ad.

You can get and set the visibility of an ad using the following:
mobileAdGetTop Visible(ad)
mobileAdSetTop Visible(ad, visible)

The visible is a boolean, set to true if the ad is visible, false otherwise.

A list of all the currently active ads can be fetched using the function:
mobileAds()

This returns a return-delimited list of the ad names.

Messages

When an add is loaded or refreshed, the message adLoaded will be sent to the current card.
adLoaded default

Here, default is a boolean, set to true if the loaded ad is a default ad.

If a user clicks on an ad, the adClicked message will be sent to the current card.
adClicked

If an ad fails to load the adLoadFailed message will be sent to the current card.
adLoadFailed

If an ad is about to resize the adResizeStart message will be sent to the current card.
adResizeStart

When an ad has finished resizing the adResizeEnd message will be sent to the current card.
adResizeEnd

If an ad is about to expand the adExpandStart message will be sent to the current card.
adExpandStart

When an ad has finished expanding the adExpandEnd message will be sent to the current card.
adExpandEnd

Cross-Mobile Note: This feature works in the same way on both Android and iOS platforms.

47

Revision 82 — 2013-05-31

In App Purchasing

Syntax

Implementing in-app purchasing requires two way communication between your LiveCode app and
the AppStore. Here is the basic process:

1. Your app sends a request to purchase a specific in-app purchase to the AppStore
The AppStore verifies this and attempts to take payment
If payment is successful the AppStore notifies your app

Your app unlocks features or downloads new content / fulfils the in-app purchase

A

Your app tells the AppStore that all actions associated with the purchase have been
completed

6. AppStore logs that in-app purchase has been completed

Commands & Functions

To determine if in app purchasing is available use:
mobileCanMakePurchase()

Returns true if in-app purchases can be made, false if not.

Throughout the purchase process, the AppStore sends purchaseStateUpdate messages to your app
which report any changes in the status of active purchases. The receipt of these messages can be
switched on and off using:

mobileEnablePurchaseUpdates

mobileDisablePurchaseUpdates
To create a new purchase use:

mobilePurchaseCreate productID

The productID is the identifier of the in-app purchase you created and wish to purchase. A
purchaselD is placed in the result which is used to identify the purchase.

To query the status of an active purchase use:
mobilePurchaseState(purchaselD)
The purchaselD is the identifier of the purchase request. One of the following is returned

* initialized - the purchase request has been created but not sent. In this state additional
properties such as the item quantity can be set.

* sendingRequest - the purchase request is being sent to the store / marketplace.

* paymentReceived - the requested item has been paid for. The item should now be delivered
to the user and confirmed via the mobilePurchaseConfirmDelivery command.

* complete - the purchase has now been paid for and delivered

* restored - the purchase has been restored after a call to mobileRestorePurchases. The
purchase should now be delivered to the user and confirmed via the

48

Revision 82 — 2013-05-31

mobilePurchaseConfirmDelivery command.
* cancelled - the purchase was cancelled by the user before payment was received
* refunded - the payment for the item was refunded to the user

* unverified - the payment request message could not be verified (the public key was not
available, or the verification check failed). Call mobilePurchaseVerify to clear this status.
* error - An error occurred during the payment request. More detailed information is available
from the mobilePurchaseError function
To get a list of all known active purchases use:

mobilePurchases()

It returns a return-separated list of purchase identifiers, of restored or newly bought purchases
which have yet to be confirmed as complete.

Before sending an your purchase request using the mobilePurchaseSendRequest, you can
configure aspects of it by setting certain properties. This is done using:

mobilePurchaseSet purchaselD, property, value
The parameters are as follows:
* purchaseld - the identifier of the purchase request to be modified
* property - the name of the property to be set
* value - the value to set the property to
Properties which can be set include:

* developerPayload - a string of less than 256 characters that will be returned with the
purchase details once complete. Can be used to later identify a purchase response to a
specific request. Defaults to empty.

As well as setting properties, you can also retrieve them using:
mobilePurchaseGet(purchaselD, property)
The parameters are as follows:
* purchaselD - the identifier of the purchase request
* property - the name of the purchase request property to get
Properties which can be queried include:
* productID - identifier of the purchased product
* purchaseDate - date the purchase / restore request was sent
* transactionldentifier - the unique identifier for a successful purchase / restore

* developerPayload - the developer payload value that was sent with the original purchase
request

» signedData - a string containing detailed information about the purchase request response,
in JSON format. This is signed by the Android Market using the private key application
developer's publisher account, the public half of the key pair can then be used to verify that
the message came from the Android Market.

49

Revision 82 — 2013-05-31

* signature - the cryptographic signature of the signedData, in base64 encoding

Once you have created and configured your purchase you can send it to the AppStore to start the
purchase using:

mobilePurchaseSendRequest purchaselD

Here, purchaselD is the identifier of the purchase request. This command should only be called on
a purchase request in the 'initialized' state.

Once you have sent your purchase request and it has been confirmed you can then unlock or
download new content to fulfil the requirements of the in-app purchase. You must inform the
AppStore once you have completely fulfilled the purchase using:

mobilePurchaseConfirmDelivery purchaselD
Here, purchaselD is the identifier of the purchase request.

mobilePurchaseConfirmDelivery should only be called on a purchase request in the
'paymentReceived' or 'restored' state. If you don’t send this confirmation before the app is closed,
purchaseStateUpdate messages for the purchase will be sent to your app the next time updates are
enabled by calling the mobileEnableUpdates command.

To instruct the AppStore to re-send notifications of previously completed purchases use:
mobileRestorePurchases

This would typically be called the first time an app is run after installation on a new device to
restore any items bought through the app.

To get more detailed information about errors in the purchase request use:
mobilePurchaseError(purchaselD)

The purchaselD is the identifier of the purchase request. It returns the error information for
purchase requests in the "error" state.

If you wish to confirm or reject a purchase in the unverified state use:
mobilePurchaseVerify purchaseld, verified
Here, the parameters are:
* purchaseld - the identifier of the purchase request

* verified - boolean: if true, a new purchase update will be sent with the status updated to
show the state of the purchase request if false, a new purchase update will be sent with the
purchase in the error state

Messages

The AppStore sends purchaseStateUpdate messages to notifies your app of any changes in state to
the purchase request. These messages continue until you notify the AppStore that the purchase is
complete or it is cancelled.

purchaseStateUpdate purchaselD, state

The state can be any one of the following:

* initialized - the purchase request has been created but not sent. In this state additional
properties such as the item quantity can be set.

50

Revision 82 — 2013-05-31

* sendingRequest - the purchase request is being sent to the store / marketplace

* paymentReceived - the requested item has been paid for. The item should now be delivered
to the user and confirmed via the mobilePurchaseConfirmDelivery command

* complete - the purchase has now been paid for and delivered

* restored - the purchase has been restored after a call to mobileRestorePurchases. The
purchase should now be delivered to the user and confirmed via the
mobilePurchaseConfirmDelivery command

* cancelled - the purchase was cancelled by the user before payment was received

* error - An error occurred during the payment request. More detailed information is available
from the mobilePurchaseError function

Busy indicator

Use the command mobileBusyIndicatorStart to display an activity dialog that will sit above all
other controls and block user interaction.

mobileBusylIndicatorStart style, [label]

The style parameter is used to determine the display style of the dialog. At the moment, only
“square” is supported. This creates a square dialog box containing an animated progress indicator
and an optional label.

The optional label parameter is used to pass any text which you wish to be displayed in the dialog.
To dismiss the dialog, use the mobileBusyIndicatorStop command.

mobileBusylIndicatorStop

Modal Pick-Wheel support

You can present the user with a list of choices to pick from using standard Android interface
elements using:

mobilePick optionList, initiallndex, [style], [button]

Where optionList is a return-delimited list to choose from, and initiallndex is the (1-based) index of
the item to be initially highlighted. The item the user chooses is returned in the result.

The initiallndex is the (1-based) index of the item to be initially highlighted.

The optional style parameter determines the type of display used If equal to "checkmark" a check-
mark (radio button) will be put against the currently selected item.

The optional button parameter specifies if "Cancel" and/or "Done" buttons should be forced to be
displayed with the picker dialog.

* cancel - display the Cancel button on the Picker
* done - display the Done button on the Picker
* cancelDone - display the Cancel and Done buttons on the Picker

If the 'Cancel' button is displayed, then any selection made by the user can be canceled, the result
contains the initial index.

51

Revision 82 — 2013-05-31

If the 'Done' button is displayed, then the result contains the initial index.

Pressing the back key has the same result as the 'Cancel' button.

Media picker support
You can present the user with the standard Android media picker using:
mobilePickMedia

A return separated list of all the media items the user has picked will be present in the result. A
media item can be played back using the play command.

Date picker support
You can present the user with a standard Android date picker using:
mobilePickDate /mode], [initial], [min], [max]
The mode parameter determines the mode of the date picker and can be one of the following:
* date
* time
The mode defaults to date.

The initial parameter determines the initial date to be displayed by the date picker. If this is empty,
the current date will be used. This should be a time in seconds since the Unix Epoch.

The min parameter is the start range of the date picker. If this value is empty, there is no lower
boundary. The value is ignored if min is greater than max. This should be a time in seconds since
the Unix Epoch.

The max parameter is the end range of the date picker. If this value is empty, there is no upper
boundary. The value is ignored if max is less than min. This should be a time in seconds since the
Unix Epoch.

When the date picker is dismissed by the user, the selected date will be stored in the result.

Native Controls
Low-level support has been added for creating and manipulating some native controls.
To create a native control use:

mobileControlCreate controlType, [name |

Where controlType is the type of control you wish to create — "browser" and name is an optional
string to use to identify the control in the other functions. The name must be unique amongst all
existing controls and cannot be an integer. The unique (numeric) id for the new control is returned
in the result.

To destroy a native control use:
mobileControlDelete idOrName

Where idOrName is the numeric id returned by mobileControlCreate, or the name of the control if
provided.

52

Revision 82 — 2013-05-31

A list of all native controls currently in existence can be fetched using the mobileControls()
function. This returns a return-delimited list of control names or ids. Where a control has a name
that is used, otherwise its id is used.

Once such a control has been created, you can configure it using:
mobileControlSet idOrName, property, value
Where

* idOrName is the numeric id returned by mobileControlCreate, or the name of the control if
provided.

* property is the name of the property to change
* value is the value of the property to change to
Properties can also be read by using mobileControlGet(id, property).
Control specific behavior can be invoked by using:
mobileControlDo idOrName, action, ...
Where action is what is to be done, and the parameters are action/control specific.

While in the context of a message that has been dispatched from a native control, you can use the
mobileControlTarget() function to fetch the name (or id, if no name is set) of the control that sent
the message.

In general, any messages dispatched by the native control will be sent to the object containing the
script which created it, this also works correctly with behaviors — messages being sent to the object
referring to the behavior, and not the behavior's object.

All controls

All native Android controls have a common set of properties and actions.

Properties

id read-only The unique (integer) id of the control.

name read-only The unique name of the control if one was provided at creation time,
empty otherwise.

rect read/write The bounds of the control, relative to the top-left of the card.

visible read/write Set to true or false to determine whether the control should be

displayed.

Browser control

A native Android browser control is created using a control type of "browser".

Properties
url read/write The url to be loaded into the web-view.
canAdvance read-only Returns true if there is a next page in the history (wraps the

53

Revision 82 — 2013-05-31

canGoForward property of UIWebView).

canRetreat read-only Returns true if there is a previous page in the history (wraps the
canGoBack property of UIWebView).

scrollingEnabled read/write Whether or not the browser can be scrolled (boolean).

canBounce read/write Determines whether the scroller will 'bounce' when it hits the edge of
the contentRect (boolean)

Actions
mobileControlDo id, "advance"

Move forward through the history (wraps the goForward method of UIWebView).
mobileControlDo id, "retreat"

Move backward through the history (wraps the goBack method of UIWebView).
mobileControlDo id, "reload"

Reload the current page (wraps the reload method of UIWebView).
mobileControlDo id, "stop"

Stop loading the current page (wraps the stopLoading method of UIWebView).
mobileControlDo id, "load", baseUrl, htmiText

Loads as page consisting of the given htmlText with the given baseUrl (wraps the
loadHtmIString method of UIWebView).

mobileControlDo id, "execute", script

Evaluates the given JavaScript script in the context of the current page (wraps the
stringByEvaluationJavaScriptFromString method of UIWebView).

Messages
browserStartedLoading ur/

Sent when the given url has started to load (sent in response to the webViewDidFinishLoad
delegate method).

browserFinishedLoading ur/

Sent when the given url has finished loading (sent in response to the webViewDidStartLoad
delegate method).

browserLoadFailed ur/, error

Sent when the given url fails to load (sent in response to the
webView:didFailLoadWithError: delegate method).

Scroller control
A native Android browser control is created using a control type of "scroller".

Rather than act as a container for other controls, the 'scroller' is intended to be used as an overlay on
part of the screen you wish to interact with the proper Android scrollbars. By responding to the

54

Revision 82 — 2013-05-31

various scroller messages, you can move LiveCode controls or set the appropriate scroll properties
of group and fields to get a native scrolling effect.

Properties

contentRect read/write
hScroll read/write
vScroll read/write

scrollingEnabled read/write

hlndicator read/write

vIndicator read/write

tracking read-only

dragging read-only

Messages

scrollerBeginDrag

The rectangle over which the scroller scrolls. This is distinct from the
scroller's rect, and is essentially the minimum/maximum values of
the scroll properties (adjusted for the size of the scroller).

This is a comma-separated list of four integers, describing a
rectangle.

The horizontal scroll offset.

This is an integer value ranging between the left and right of the
contentRect, adjusting appropriately for the size of the scroller (i.e.
contentRect.left to contectRect.right — rect.width).

The vertical scroll offset.

This is an integer value ranging between the top and bottom of the
contentRect, adjusting appropriately for the size of the scroller (i.e.
contentRect.top to contectRect.bottom — rect.height).

Determines whether touches on the scroller cause scrolling (maps to
the UIScrollView scrollEnabled property).

This is a boolean value.

Determines whether the horizontal indicator should be displayed
when scrolling.

This is a boolean value.

Determines whether the vertical indicator should be displayed when
scrolling.

This is a boolean value.

Returns true if the scroller is monitoring a touch for the start of a
scroll action.

This is a boolean value.
Returns true if the scroller is currently performing a scroll action.

This is a boolean value.

This message is sent when a scroll initiating drag is started.

scrollerEndDrag didDecelerate

This message is sent when a scroll initiating drag is finished.
scrollerDidScroll #Scroll, vScroll

55

Revision 82 — 2013-05-31

This message is sent when the scroll properties of the scroller have changed.

Player control

A native Android media player is created using a control type of "player".

Properties
filename read/write The filename of URL of the media to play.

Setting the filename of the player automatically 'prepares' the movie
for playback.

showController read/write Determines whether the controller will be displayed over the content.
This is a boolean value.

looping read/write Determines whether the playback of the movie should loop
indefinitely.

This is a boolean value.

currentTime read/write The current position of the playhead, measured in milliseconds
(maps to the native currentPlaybackTime property).

This is an integer value.

Actions
mobileControlDo id, "play"

Start playing the content of the player.
mobileControlDo id, "pause"

Pause the content at the current position.
mobileControlDo id, "stop"

Stop playing the content of the player.

Messages
playerFinished

The content has finished playing through.
playerStopped

The content finished playing through due to a user exit.
playerError

The content finished playing due to an error.

Input control
A native text field control is created using a control type of "input".

The input control allows the editing of a single line of text, with the 'return' key ending editing and

56

Revision 82 — 2013-05-31

allowing the application to perform an appropriate action.

Properties

text read/write
unicodeText read/write
textColor read/write
fontSize read/write
textAlign read/write

autoCapitalizationType read/write

autoCorrectionType read/write

keyboardType read/write

The content of the control (maps to the native text property).
This is a string value.

The content of control encoded as UTF-16 (maps to the native
text property).

This is a binary value.

The color to use for the text in control (maps to the native
textColor property).

This is either a standard color name, or a string of the form
red,green,blue or red,green,blue,alpha. Where the components
are integers in the range 0 to 255.

The size of the font to use for text in the control.
This is an integer value.

The alignment to use for text in the control (maps to the native
textAlignment property).

This is one of left, center or right.

Determines when the shift-key is automatically enabled (maps to
the native autocapitalizationType property).

This is one of the following:
* none — the shift-key is never automatically enabled
* words — the shift-key is enabled at the start of words

* sentences — the shift-key is enabled at the start of
sentences

* all characters — the shift-key is enabled at the start of
each character

Determines whether auto-correct behavior should be enabled
(maps to the native autocorrectionType property).

This is one of the following:

* default — use the appropraite auto-correct behavior for the
current script system.

* no — disable auto-correct behavior
* yes — enable auto-correct behavior

Determines what kind of keyboard should be displayed (maps to
the native keyboardType property).

This is one of the following:

57

returnKeyType

contentType

editable
dataDetectorTypes

selectedRange

scrollingEnabled

multiline

read/write

read/write

read/write

read/write

read/write

read/write

read/write

Revision 82 — 2013-05-31

* default — the normal keyboard

* alphabet — the alphabetic keyboard

* numeric — the numeric keyboard with punctuation

* url—the url entry keyboard

* number — the number pad keyboard

* phone — the phone number pad keyboard

* contact — the phone contact pad keyboard

* email — the email keyboard

* decimal — the decimal numeric pad keyboard (i0S 4.1+)

Determines what kind of return-key the keyboard should have
(maps to the native returnKeyType property).

This is one of the following:

* default — the normal return key

* go —the 'Go' return key

* next —the 'Next' return key

* search — the 'Seach' return key

* send — the 'Send' return key

* done — the 'Done' return key
Determines what kind of content the control contains.
This is one of the following:

* plain — plain, unstyled text

* password — plain text displayed in the standard 10S
password style.

Whether the field contents can be edited (boolean)

Determines what types of data should be detected and
automatically converted to clikckable URLs.

This is a comma delimited list of none or more of the following:

* phone number

e link
e address
* emalil

Start & end of current selection (two comma separated
numbers).

Whether or not the field can be scrolled (boolean).

If true, this field can contain multiple lines of text, wraps text to
fit horizontally, and scrolls vertically. If false, the field contains a

58

Revision 82 — 2013-05-31

single line of text which can scroll horizontally (boolean).

vertical TextAlign read/write Determine the vertical alignment of the text within the field.

9% ¢

One of “top”, “center” or “bottom”.

(Multi-line controls only).

Messages
inputBeginEditing

The control has become focused and editing has commenced.
inputEndEditing

The control has lost focus and editing has ceased.
inputTextChanged

An editing operation has taken place and the content of the control has changed.
inputReturnKey

The return key has been pressed and focus removed from the input control.

Multi-line Input control

A multi-line field control is created using a control type of "multiline". This behaves in the same
manner as the single line input control except that the field can contain multiple lines of text, wraps
text to fit horizontally, and scrolls vertically

Noteworthy Changes

OpenGL Compositor (5.0.1-dp-1)

You can now use the 'opengl' compositor type on Android. This feature is still in development.
There are the following known issues:

1. Visual effects will not work when compositorType is "opengl".

2. When switching between opengl and non-opengl the screen will render black briefly.

3. The engine will output various information related to OpenGL usage to the device log - in
particular related to supported 'EGL configurations'. This information will be useful in
helping diagnose problems if OpenGL mode does not work on a specific device.

4. OpenGL mode has not been fully tested with all Android features

Contact access updates (6.0-dp-3)

The data structures handled by the contact access handlers has been unified to use a common
contact array.

59

Revision 82 — 2013-05-31

Change Logs and History

Engine Change History

pre-release-1 (2011-02-21) MW Initial version.
pre-release-2 (2011-02-23) MW Fixed bug — initial touch ignored

Fixed bug — multiple touches not reported correctly

pre-release-3 (2011-03-08) MW Added support for unique identifiers for each package allowing

4.6.1-rc-1 (2011-04-19)

4.6.1-gm-1 (2011-04-25)

4.6.1-gm-2 (2011-05-04)

4.6.2-dp-1 (2011-06-01)

4.6.2-rc-1 (2011-06-08)

4.6.2-rc-2 (2011-06-15)

4.6.2-gm-1 (2011-06-20)
4.6.3-dp-1 (2011-07-01)

4.6.3-dp-2 (2011-07-11)

multiple LiveCode Android apps on a device.

Added support for asset file inclusion, allowing files to be
bundles with a LiveCode app.

Added support for 'ask' and 'ask password' dialogs

Added support for the accelerometer (if present)

Added support for basic sound playback

MW Added support for unicode text rendering
Added support for non-file URL access
Added support for picking photos from library and camera
Added support for orientation changes
Added support for mail composition
Added support for launch url
Added support revXML, revZip, dbSQLite and dbMySQL
Added support for 'backKey' message when back button pressed
Added support for cache and documents to specialFolderPath
Fixed bug with startup / shutdown when returning from home
Fixed bug with quit command
Fixed numerous graphic rendering issues

MW Added support for basic keyboard input.

Fixed bug with the mouseLoc being vertically displaced.
Fixed bug with mouseRelease not being sent when touch
cancelled.

MW Fixed bug with keyboard appearing even if no focusable controls.
Fixed bug causing app to crash on exit if global variables used
(9526)

MW Fixed a number of intermittant crashes and stability issues.
Fixed bug with camera not working (9522)

Fixed bug with orientation on tablets (9540)

MW Fixed bug with 'folder' needing trailing slash for engine path
(9565)

MW Ask and answer dialogs now respond to the back button (cause
cancellation).

Added support for mobileShowStatusbar / mobileHideStatusbar.
Added support for mobileCanSendMail.
Fixed bug with orientation reporting on landscape devices.

MW Fixed bug with reversal of red/blue in bitmap effects.

MM Fixed bug with mobilePickPhoto crashing (9522).

Fixed bug with non-alphabetic keyboard types (9594).

MM No changes.

60

4.6.3-dp-3(2011-07-13)
4.6.3-rc-1(2011-07-15)

4.6.3-gm-1(2011-07-19)
4.6.3-gm-2(2011-07-26)

4.6.4-dp-1 (2011-08-10)
4.6.4-dp-2 (2011-08-16)
4.6.4-dp-3 (2011-08-22)
4.6.4-rc-1 (2011-08-26)

4.6.4-rc-2 (2011-09-02)

4.6.4-gm-1 (2011-09-06)
4.6.4-gm-2 (2011-09-09)

4.6.4-gm-3 (2011-09-15)
5.0.0-dp-1 (2011-09-15)

5.0.0-dp-2 (2011-09-22)
5.0.0-dp-3 (2011-09-27)
5.0.0-dp-4 (2011-10-03)

5.0.0-rc-4 (2011-10-06)

5.0.0-rc-2 (2011-10-08)
5.0.0-gm-1 (2011-10-10)
5.0.0-dp-1 (2011-10-19)

5.0.1-dp-2 (2011-10-26)
5.0.1-dp-3 (2011-11-07)

5.0.1-rc-1 (2011-11-16)

5.0.1-r¢-2 (2011-11-21)
5.0.1-gm-1 (2011-11-23)
5.0.2-dp-1 (2011-11-25)

Revision 82 — 2013-05-31

MM No changes.

MM Added support for streaming of hosted videos. (Bug 9614).
Fixed bug with certain graphics rendering incorrectly (9623).
Addressed bug with incorrect orientation handling on certain
devices (9540).

Added function mobileDevicelnfo.

MM No changes.

MM Fixed bug with opening SQLite databases crashing (9630).
Fixed bug with URL downloads sporadically corrupting.

MM No changes.

MM Added support for the mouse function.

MM No changes.

MM Added support for the networkInterfaces property.

MM Fixed bug with color's swapping in patterns (9702).

MM No changes.

MM Updated launch URL to handle a wider range of file types (Bug
9713).

MM No changes.

MM Support added for the standard desktop visual effects.
Graphics architecture modified to support software accelerated
rendering. See main release note for full details.

MM No changes.

MM No changes.

MM Fixed bug - card/stack initialized with wrong size during Android
startup.

Fixed bug- incorrect region used when updating screen on
Android (9772)

MM Fixed bug - low memory warning crashes Android.

Fixed bug - import/export snapshot inverts colors on Android
(9779).

Fixed bug - bitmap effects with non-copy blendMode don't
render correctly on Android (9771).

MM No changes.

MM No changes.

MM Implemented OpenGL compositor.

Fixed bug - memory leak when redrawing on Android devices in
certain cases.

Fixed bug - visual effects between stacks do not ensure target
stack is resized correctly before playing on mobile.

MM Implemented in-app purchasing.

MM Fixed bug — opaque graphics render incorrectly using OpenGL
compositor (9837).

MM Fixed bug - black screen when switching between OpenGL and
Bitmap modes on Android.

Fixed bug - visual effects don't work in OpenGL mode on
Android.

MM Added support for the menu and search hardware buttons.

MM No changes.

MM No changes.

61

5.0.2-rc-1 (2011-12-02)
5.0.2-gm-1 (2011-12-12)

5.5.0-dp-1 (2011-02-13)

5.5.0-dp-2 (2011-02-27)

5.5.0-dp-3 (2011-03-09)

5.5.0-rc-1 (2012-03-14)

5.5.0-r¢-2 (2012-03-16)
5.5.0-gm-1 (2012-03-20)

5.5.0-gm-2 (2012-03-23)

5.5.0-gm-3 (2012-03-26)

5.5.1-dp-1 (2012-04-05)

5.5.1-dp-2 (2012-05-04)

5.5.1-rc-1 (2012-05-10)

5.5.1-r¢-2 (2012-05-11)

Revision 82 — 2013-05-31

MM No changes.
MM Fixed bug — apps that use parent scripts crash on restart.
Fixed bug — certain visual effects cause black flash when using
OpenGL compositor (9901).
Fixed bug - pause at end of visual effect on Android due to
missing redraw (9907).
Fixed bug - flash of previous frame at end of effect on (9908).
MM Added support for native browser control.
Added modal pick wheel support.
Added date picker support.
Added support for location, heading, rotation sensors.
Added support for multi-channel sound.
Added support for busy inidicators.
Fixed bug — post to URL does not work (9964).
Fixed bug — HTTP basic authentication not supported.
MM Added support for local notifications.
Added support for push notifications.
Added support for custom URL schemes.
Added support for in app advertising.
Added support for vibrate.
Added support for beep.
Added support for text messaging.
Fixed bug - pickers do not return 0 on cancel (9999).
MM Added support for custom fonts.
Added support for Idle Timer configuration.
Added localisation calls.
Fixed bug - list bullets don't render.
MM Removed support for in app advertising.
Fixed bug — location sensor does not restart after being stopped
(10077).
Fixed bug - if no reading has been retrieved from Android sensor,
fetching a reading should return empty.
MM Fixed bug - not specifying a type crashes mobilePickDate.
MM Fixed bug - apps freeze on restart if heading has not been stopped
in previous session (10104).
MM Fixed bug — keyboard switches back from numeric to alphabetic
after a number has been entered (10040).
MM No changes.
MM Re-instated support for in-app advertising.
Added support for mdeia picker.
Added support for saving images to the user's photo album.
Added support for native scroller control.
Added support for native player control.
MM Fixed bug — mobileAdCreate no longer requires all parameters to
be specified.
Updated ad support to use latest inneractive APIs.
MM Added support for address book access.
Added support for native field controls.
MM Added address book support for phonehome and phonework.

62

5.5.1-rc-3 (2012-06-01)

5.5.1-rc-4 (2012-06-15)

5.5.1-gm-1 (2012-06-19)
5.5.2-dp-1 (2012-08-17)

5.5.2-rc-1 (2012-08-31)

5.5.2-r¢-2 (2012-09-07)
5.5.2-gm-1 (2012-09-11)
5.5.2-gm-2 (2012-09-13)
5.5.3-rc-1 (2012-09-26)

5.5.3-rc-2 (2012-10-09)

5.5.3-rc-3 (2012-10-19)

5.5.3-gm-1(2012-10-25)

5.5.3-gm-2 (2012-10-31)

6.0.0-dp-1 (2012-11-08)

6.0.0-dp-2 (2012-11-26)

6.0.0-dp-3 (2012-12-11)

MM

MM

MM
MM

MM

MM
MM
MM
MM

MM

MM

MM

MM

MM

MM

MM

Revision 82 — 2013-05-31

Removed support for phonemain.

Fixed bug - mobile controls can remain in list after deleted
(10203).

Fixed bug - mobile pick crashes Android simulator (10211).
Fixed bug — get URL does not return error code in result and
error page delivered by server (10243).

Enabled plugins in native browser control.

Fixed bug — crash on certain visual effects (10247).

Updated ad support to use latest inneractive ad APIs.

Updated ad support to use latest inneractive ad APIs.

Fixed bug — mobileLockTimer fails (10316).

Fixed bug - scrolling large images creates vertical chunks of cd
color over the image (10285).

Updated engine to support user created externals.

Fixed bug — changing contentRect does not update scroller
(10318).

Fixed bug — text does not render within tight loops (10333).

No changes.

No changes.

Fixed bug - local files cannot be opened in native browser
(10365).

Fixed bug - setting the fileName of an image does not work
(10394).

Added two new browser properties canBounce and
scrollingEnabled (enhancement request 10304).

Fixed bug — native text field does not dismiss keyboard (10219).
Fixed bug — restarting app causes hang (10439).

Added function mobilePixelDensity.

Added keyboardActivated/keyboardDeactivated messages.
Updated the working screenRect to take into account space
occupied by keyboard.

Fixed bug — multi channel audio playback clipped on Kindle Fire
(10437).

Fixed bug — numeric keyboard input not appearing (10466).
Fixed bug — tel: and mailto: links do not work in browser control
(10440).

Fixed bug — mail always returns cancel (10486).

Reverted the working screenRect to taking only the status bar
into account.

Added the effective working screenRect to take into account
space occupied by keyboard.

No changes.

Fixed bug — date and time returned by date picker is offset by the
locale of the device (10483).

Fixed bug — movieTouched message not sent (10510).

Added property “vertical TextAlign” to native fields.

Fixed bug — stretching certain images can cause artefacts (bug
10500).

Updated the address book features to use a common contact array

63

6.0.0-dp-4 (2012-12-20)
6.0.0-dp-5 (2013-03-01)

6.0.0-rc-1 (2013-03-08)
6.0.0-rc-2 (2013-03-15)

6.0.0-rc-3 (2013-03-25)

6.0.0-rc-4 (2013-04-02)
6.0.0-rc-5 (2013-04-04)
6.0.0-r¢-6 (2013-04-05)
6.0.0-rc-7 (2013-04-05)
6.0.0-gm-1 (2013-04-09)
6.0.1-rc-1 (2013-04-19)
6.0.1-gm-1 (2013-04-30)
6.0.2-rc-1 (2013-05-24)

6.0.2-gm-1 (2013-05-31)

MM
MM

Revision 82 — 2013-05-31

structure (bugs 10347, 10544).

Fixed bug — native controls are not created when an app is
restarted.

No changes.

Added optional opacity parameter to busy indicator (bug 10642).
Fixed bug — playRate has no effect on native player (10632).
Fixed bug — preceding or trailing whitespace not ignored in
URLSs (10030).

Fixed bug - keyDown/keyUp messages now sent correctly on
JellyBean (10684).

Fixed bug — certain paths resolved incorrectly (10636).

Fixed bug - temporary file not always writable by the camera app
(10482).

MM No changes.
MM Fixed bug — crash when calling replaceText in preOpenStack

(10713).

MM Fixed bug — mobileSetKeyboardType has no effect on ask

dialogs (10758).

MM No changes.
MM No changes.
MM No changes.

BB

No changes.

MM No changes.
MM No changes.
MM No changes.
MM Fixed bug — answer dialogs displayed on app termination prevent

app from restarting correctly (10856).

MM No changes.

Deployment Change History

pre-release-1 (2011-02-21) MW Initial version.
pre-release-2 (2011-02-23) MW No changes.
pre-release-3 (2011-03-08) MW Added support for unique package names

4.6.1-rc-1 (2011-04-19)
4.6.1-gm-1 (2011-04-25)
4.6.1-gm-2 (2011-05-04)

4.6.2-dp-1 (2011-06-01)

4.6.2-rc-1 (2011-06-08)

4.6.2-rc-2 (2011-06-15)
4.6.2-gm-1 (2011-06-20)

4.6.3-dp-1 (2011-07-01)

MW
MW
MW

MW

MW

MW
MW

MM

Added support for assets

Integrated deployment into the IDE.

No changes.

Fixed bug with building standalones when not using a
commercial license.

Fixed bug where APKs would be signed with both a debug and
distribution key.

Fixed bug with detection of appropriate JDK on 64-bit Windows.
Fixed bug with icon not being included in APK if not absolute
path (9568)

No changes.

Fixed bug with failing to report an error when signing an APK if
the name or password are incorrect.

Updated standalone builder to allow setting of manifest
permissions and features.

64

4.6.3-dp-2 (2011-07-11)
4.6.3-dp-3 (2011-07-13)
4.6.3-rc-1(2011-07-15)
4.6.3-gm-1(2011-07-19)

4.6.3-gm-2(2011-07-26)
4.6.4-dp-1 (2011-08-10)

4.6.4-dp-2 (2011-08-16)

4.6.4-dp-3 (2011-08-22)
4.6.4-rc-1 (2011-08-26)

4.6.4-rc-2 (2011-09-02)

4.6.4-gm-1 (2011-09-06)
4.6.4-gm-2 (2011-09-09)
4.6.4-gm-3 (2011-09-15)
5.0.0-dp-1 (2011-09-15)
5.0.0-dp-2 (2011-09-22)
5.0.0-dp-3 (2011-09-27)
5.0.0-dp-4 (2011-10-03)
5.0.0-rc-1 (2011-10-06)

5.0.0-rc-2 (2011-10-08)

5.0.0-gm-1 (2011-10-10)
5.0.1-dp-1 (2011-10-19)
5.0.1-dp-2 (2011-10-26)

5.0.1-dp-3 (2011-11-07)
5.0.1-rc-1 (2011-11-16)
5.0.1-r¢-2 (2011-11-21)
5.0.1-gm-1 (2011-11-23)
5.0.2-dp-1 (2011-11-25)
5.0.2-rc-1 (2011-12-02)
5.0.2-gm-1 (2011-12-12)

5.5.0-dp-1 (2011-02-13)

MM
MM
MM
MM

MM

MM

MM

MM
MM
MM
MM
MM
MM
MM
MM
MM
MM
MM
MM
MM
MM
MM

MM

MM

MM

MM

MM

MM

MM

MM

Revision 82 — 2013-05-31

Updated standalone builder to allow the signing of APKs with
debug key, distribution key or no key.

Fixed bug in standalone builder with APK signing errors not
being reported.

No changes.

No changes.

No changes.

A default Ic_device config.txt is prepended onto user
Ic_device config.txt file (if applicable).

Fixed bug with Standalone Builder not finding keystore files
when relative to the current stack (9633).

Updated the standalone build process to handle the latest Android
SDK directory structure.

Updated standalone builder to allow building with JDK 1.7.
Fixed bug with splash screen inclusion for personal and
educational licenses.

No changes.

No changes.

No changes.

No changes.

No changes.

No changes.

No changes.

No changes.

No changes.

No changes.

No changes.

No changes.

No changes.

No changes.

Updated the standalone builder to allow specifying of the public
key to verify in-app purchases against.

Updated standalone builder to allow builds to be stored on the
SD card as well as device.

No changes.

No changes.
No changes.
No changes.
No changes.
No changes.

Updated Standalone Builder to add GPS permissions.

65

5.5.0-dp-2 (2011-02-27)

5.5.0-dp-3 (2011-03-09)

5.5.0-rc-1 (2012-03-14)
5.5.0-rc-2 (2012-03-16)
5.5.0-gm-1 (2012-03-20)
5.5.0-gm-2 (2012-03-23)
5.5.0-gm-3 (2012-03-26)
5.5.1-dp-1 (2012-04-05)
5.5.1-dp-2 (2012-05-04)
5.5.1-rc-1 (2012-05-10)
5.5.1-rc-2 (2012-05-11)
5.5.1-rc-3 (2012-06-01)
5.5.1-rc-4 (2012-06-15)
5.5.1-gm-1 (2012-06-19)

5.5.2-dp-1 (2012-08-17)

5.5.2-r¢-1 (2012-08-31)
5.5.2-r¢-2 (2012-09-07)
5.5.2-gm-1(2012-09-11)
5.5.2-gm-2 (2012-09-13)
5.5.3-r¢-1 (2012-09-26)
5.5.3-r¢-2 (2012-10-09)
5.5.3-r¢-3 (2012-10-19)

5.5.3-gm-1 (2012-10-25)

MM

MM

MM

MM

MM

MM

MM

MM

MM

MM

MM

MM

MM

MM

MM

MM

MM

MM

MM

MM

MM

MM

MM

Revision 82 — 2013-05-31

Updated Standalone Builder to include support for vibrate,
notifications and a default icon.

Added support for .ttf and .ttc font files in the Copy Files pane of
the standalone builder.

Updated Standalone Builder to include support for idle timer.
Fixed bug - minimum version not honoured in Standalone
Settings (1002).

No changes.

No changes.

Fixed bug — error building applications when “copy files”
includes nested folders.

No changes.

No changes.

No changes.

Added “Ad Support” check box to standalone builder.
Added contact support permissions to standalone builder.
Added missing XML to package.

No changes.

No changes.

No changes.

Updated the deployment process to support development on
Linux.

Added support for user created externals.

No changes.

Fixed bug — files within sub-folders are not copied in apk
correctly (10345).

No changes.

No changes.

No changes.

No changes.

No changes.

No changes.

66

5.5.3-gm-2 (2012-10-31) MM No changes.
6.0.0-dp-1 (2012-11-08) MM No changes.
6.0.0-dp-2 (2012-11-) MM No changes.
6.0.0-dp-3 (2012-12-11) MM No changes.
6.0.0-dp-4 (2012-12-20) MM No changes.
6.0.0-dp-5 (2013-03-01) MM No changes.
6.0.0-rc-1 (2013-03-08) MM No changes.
6.0.0-rc-2 (2013-03-15) MM No changes.
6.0.0-rc-3 (2013-03-25) MM No changes.
6.0.0-rc-4 (2013-04-02) MM No changes.
6.0.0-rc-5 (2013-04-04) MM No changes.
6.0.0-rc-6 (2013-04-05) MM No changes.
6.0.0-rc-7 (2013-04-08) BB No changes.
6.0.0-gm-1 (2013-04-09) MM No changes.
6.0.1-rc-1 (2013-04-19) MM No changes.
6.0.1-gm-1 (2013-04-30) MM No changes.
6.0.2-rc-1 (2013-05-24) MM

(10904).
6.0.2-gm-1 (2013-05-31) MM No changes.
Document Change History
Revision 1 (2011-02-21) MW Initial version.
Revision 2 (2011-02-23) MW No changes.
Revision 3 (2011-03-08) MW

Revision 4 (2011-04-19)
Revision 5 (2011-04-25)
Revision 6 (2011-05-04)
Revision 7 (2011-06-01)
Revision 8 (2011-06-08)

MW
MW
MW
MW
MW

Revision 82 — 2013-05-31

Fixed bug — updates to Android SDK file breaks app building

Added section on accelerometer support

Added section on basic sound playback support
Updated section on file and folder handling to mention accessing

assets

Updated section dialogs to include ask
Completely revised.
Added section on keyboard support.

No changes.
No changes.
No changes.

Revision 9 (2011-06-15)

Revision 10 (2011-06-20)
Revision 11 (2011-07-01)

Revision 12 (2011-07-11)
Revision 13 (2011-07-13)
Revision 14 (2011-07-15)

Revision 15 (2011-07-19)
Revision 16 (2011-07-26)
Revision 17 (2011-08-10)
Revision 18 (2011-08-16)
Revision 19 (2011-08-22)
Revision 20 (2011-08-26)
Revision 21 (2011-09-02)
Revision 22 (2011-09-06)
Revision 23 (2011-09-09)
Revision 24 (2011-09-15)
Revision 25 (2011-09-15)
Revision 26 (2011-09-22)
Revision 27 (2011-09-27)
Revision 28 (2011-10-03)
Revision 29 (2011-10-06)
Revision 30 (2011-10-08)
Revision 31 (2011-10-10)
Revision 32 (2011-10-19)
Revision 33 (2011-10-26)
Revision 34 (2011-11-07)
Revision 35 (2011-11-16)
Revision 36 (2011-11-20)

Revision 37 (2011-11-23)
Revision 38 (2011-11-25)
Revision 39 (2011-12-02)
Revision 40 (2011-12-12)
Revision 41 (2012-02-13)

MW

MW
MM

MM
MM
MM

MM
MM
MM
MM
MM
MM
MM
MM
MM
MM
MM
MM
MM
MM
MM
MM
MM
MM
MM
MM
MM
MM

MM
MM
MM
MM
MM

Revision 82 — 2013-05-31

Added section on status bar configuration support.
Updated section on mail handling to mention CanSendMail.
No changes.

Updated section on setting manifest options.
Updated section on configuring Android standalone.
Added section on video playback support.
Removed section on playing HTTP videos.

No changes.

Added section on playing HTTP videos.

Added section Device specific orientation.

Added section Device information.

Updated section Device specific orientation.

No changes.

No changes.

No changes.

No changes.

Updated section Device Information.

No changes.

No changes.

Updated section section “URL launching support”.
No changes.

No changes.

No changes.

No changes.

No changes.

No changes.

No changes.

No changes.

Added section “OpenGL Compositor”.

Added section “In-app purchasing”

No changes.

No changes.

Renamed section “Hardware back key” support to “Hardware
button support”.

Added details of “menuKey” and “searchKey” messages to
section “Hardware button support”.

No changes.

No changes.

No changes.

Updated section “Non-file URL access”.

Added section “Native controls”

Added section “Modal pick wheel”.

Added section “Date picker”.

Added section “Sensor tracking”

Added section “Heading tracking”.

Added section “Location tracking”.

Updated section “Accelerometer support”.

Added section “Multi-Channel sound support”.
Added section “Busy Indicator”.

68

Revision 42 (2012-02-27)

Revision 43 (2012-03-09)

Revision 44 (2012-03-14)
Revision 45 (2012-03-16)
Revision 46 (2012-03-20)
Revision 47 (2012-03-23)
Revision 48 (2012-03-26)
Revision 49 (2012-04-05)

Revision 50 (2012-05-04)
Revision 51 (2012-05-10)

Revision 52 (2012-05-10)
Revision 53 (2012-06-01)
Revision 54 (2012-06-01)
Revision 55 (2012-06-19)
Revision 56 (2012-08-17)

Revision 57 (2012-08-31)
Revision 58 (2012-09-07)
Revision 59 (2012-09-11)
Revision 60 (2012-09-13)
Revision 61 (2012-09-26)
Revision 62 (2012-10-09)

Revision 63 (2012-10-19)
Revision 64 (2012-10-24)
Revision 65 (2012-10-31)
Revision 66 (2012-11-08)

Revision 67 (2012-11-26)
Revision 68 (2012-12-11)

MM

MM

MM
MM
MM
MM
MM
MM

MM
MM

MM
MM
MM
MM
MM

MM
MM
MM
MM
MM
MM

MM
MM
MM
MM

MM
MM

Revision 82 — 2013-05-31

Added section “Local Notifications”.
Added section “Push Notifications”.
Added section “Custom URL Schemes”.

Added section “In App Advertising”.

Added section “System Alert Support”.

Added section “Vibration support”.

Added section “Text Messaging”.

Added section “Adding custom fonts”

Updated section “What doesn't work”.

Added section “Font querying support”.

Added section “Idle timer configuration”.

Added section “Locale and system language query support”.
Removed section “In App Advertising”.

No changes.

No changes.

No changes.

No changes.

Added section “Saving photos to the user's album”.
Added section “Media picker support”.

Added section “Scroller control”.

Added section “Player control”.

Added section “In App Advertising”.

Updated section “In App Advertising”.

Added section “Contact Access”.

Added section “Input control”

Added section “Multi-line input control”.

Updated section “Contact Access”.

Updated section “Contact Access”.

No changes.

Updated section “In App Advertising”.

Updated section “Overview”.

Updated section “Getting Started”.

Updated section “Prerequisites”.

Updated section “Configuring LiveCode”.

No changes.

No changes.

No changes.

No changes.

Updated section “Browser Control”.

Added section “Activation Notifications”.

Updated section “Resolution Handling”.

Updated section “System Dialogs — answer and ask™.
Added section “Clearing pending interactions”.
Updated section “Email Composition”.

Updated section “Resolution Handling”.

No changes.

Updated section “Input Control”.

No changes.

Updated section “Noteworthy Changes”.

69

Revision 82 — 2013-05-31

Updated section “Contact Access”
Updated section “Push Notifications”.
No changes.

Updated section “Sensor Tracking”.

Revision 69 (2012-12-20)
Revision 70 (2013-03-01)

MM
MM

Revision 71 (2013-03-08)
Revision 72 (2013-03-15)
Revision 73 (2013-03-25)
Revision 74 (2013-04-02)
Revision 75 (2013-04-04)
Revision 76 (2013-04-05)
Revision 77 (2013-04-08)
Revision 78 (2013-04-09)
Revision 79 (2013-04-19)
Revision 80 (2013-04-30)
Revision 81 (2013-05-24)
Revision 82 (2013-05-31)

MM
MM
MM
MM
MM
MM
BB

MM
MM
MM
MM
MM

No changes.
No changes.
No changes.
No changes.
No changes.
No changes.
No changes.
No changes.
No changes.
No changes.
No changes.
No changes.

70

	Overview
	Getting Started
	Prerequisites
	Configuring LiveCode
	Configuring an Android standalone
	Configuring an emulated device
	Configuring a real device
	Testing an Android application
	A First Project

	Configuring an Android Application
	Setting manifest options
	Adding a launcher icon
	Adding a splash image (personal and educational)
	Adding a default launch image (trial)
	Adding custom fonts

	Deployment Features
	Standalone builder messages

	General Engine Features
	Engine version
	What doesn't work
	What does work
	Windowing and Stacks
	System Dialogs – answer and ask
	Non-file URL access
	Externals

	Android Specific Engine Features
	Limitations
	Multi-touch events
	Mouse events
	Motion events
	Hardware button support
	System alert support
	Vibration support
	Accelerometer support
	Location tracking (GPS)
	Determining support
	Activating and deactivating tracking
	Detection location changes
	Querying the location

	Heading tracking (digital compass)
	Determining support
	Activating and deactivating tracking
	Detection heading changes
	Querying the heading

	Sensor tracking
	Sensor availability
	Start tracking sensor
	Stop tracking sensor
	Sensor update messages
	Getting a sensor reading

	Photo album and camera support
	Taking or choosing photos
	Saving photos to the users album

	Keyboard Input
	Configuring keyboard type
	Activation notifications

	Orientation handling
	Auto-rotation support
	Querying orientation
	Controlling auto-rotation
	Orientation changed notification
	Device specific orientations

	Resolution handling
	Text messaging support
	Email composition
	Basic support
	Advanced support

	File and folder handling
	Basic sound playback support
	Multi-channel sound support
	Playing Sounds
	Channel Properties
	Managing Channels

	Video playback support
	URL launching support
	Font querying support
	Hardware and system version query support
	Idle Timer configuration
	Locale and system language query support
	Querying camera capabilities
	Clearing pending interactions
	Status bar configuration support
	Contact Access
	UI Contact Access Features
	Creating a Contact
	Picking a Contact
	Showing a Contact
	Updating a Contact

	Syntax Contact Access Features
	Contact Array Structure
	Adding a Contact
	Finding a Contact
	Removing a Contact
	Getting Contact Data

	Device Information
	Local notifications
	Push notifications
	Custom URL schemes
	In App Advertising
	Registering Your App Key
	Creating & Managing Ads
	Messages

	In App Purchasing
	Syntax
	Commands & Functions
	Messages

	Busy indicator
	Modal Pick-Wheel support
	Media picker support
	Date picker support
	Native Controls
	All controls
	Properties

	Browser control
	Properties
	Actions
	Messages

	Scroller control
	Properties
	Messages

	Player control
	Properties
	Actions
	Messages

	Input control
	Properties
	Messages

	Multi-line Input control

	Noteworthy Changes
	OpenGL Compositor (5.0.1-dp-1)
	Contact access updates (6.0-dp-3)

	Change Logs and History
	Engine Change History
	Deployment Change History
	Document Change History

